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Abstract—In this paper we consider the problem of charac-
terizing and analyzing a wireless network from limited passive
observations of network activity. In particular, we will assume
that the only information that we can acquire is knowledge
of when each particular transmitter in the network initiates
any given transmission. From this data, we wish to be able to
solve problems such as learning the network topology, detecting
changes to the existing topology, and extracting higher-level
summaries of information flow in the network. We show how one
can use a multidimensional autoregressive point process known
as a Hawkes process to model the observed data and approach
these problems.

I. INTRODUCTION

A fundamental problem in network monitoring consists of
characterizing and analyzing the structure of wireless net-
works. There are a variety of techniques for approaching
these problems as an observer within the network, but in
many important applications we are limited to the role of
a passive observer outside the network, meaning that we
cannot directly discover the details of network traffic (message
content, routing information, etc.). This may arise in cases
where traffic is encrypted or otherwise unavailable, or where
there is simply too much traffic to process. These scenarios
are particularly common in signals intelligence and electronic
warfare applications, but arise in other applications as well.

Our focus in this paper is on how we can solve problems
such as learning the network topology, detecting changes to
the existing topology, and extracting high-level summaries of
information flow in the network under the assumption that
the only information we can observe is when each transmitter
in the network initiates a transmission. While learning from
this limited source of data might seem difficult, we will see
that a significant amount of information can be extracted by
exploiting the fact that communication is typically reciprocal.
That is, a transmission from a particular transmitter is likely
to cause other transmissions in response (such as return
messages, acknowledgments, packet forwarding, etc.).

With this assumption, we can use the co-occurrence of trans-
missions from different transmitters to infer their relationships
by modeling the data as a multidimensional autoregressive
point process known as a Hawkes process. This approach relies
on the assumption that we are able to accurately determine
who is transmitting at any given time. In practice, this can be
achieved through geolocation, specific emitter identification,
and other content-agnostic features.

II. HAWKES PROCESSES

Hawkes processes are autoregressive point processes that
provide a powerful method for inferring connections between
nodes based on when events are observed. Initially developed
in the context of modeling earthquake occurrence [1], they
have since been used for studying relations in social [2], neural
[3], financial [4], epidemic [5], and other varieties of networks.

Here we provide a brief introduction to Hawkes processes
and how they can be used to model activity in a network with
a given structure.

A. One-dimensional Hawkes processes

We begin by considering a one-dimensional Hawkes pro-
cess, which is simply a point process where the conditional
intensity function (CIF) – a rate parameter denoted by λ(t) –
depends on the history (previous event times) of the process:

λ(t) = µ(t) +A

K∑
k=1

γ(t− tk). (1)

The set of times at which events occur is {tk}Kk=1. The
parameter µ(t) ≥ 0 is the base rate for the process, which
can potentially vary as a function of time. In this paper we
will restrict our attention to the case where µ(t) is constant,
so from this point onward we will omit its dependence on t.
The parameter A ≥ 0 represents the tendency of the process to
self-excite, with larger A resulting in a process that produces
clusters of events. The kernel γ(t) represents the temporal
relationship between events and responses. It should be causal
(γ(t) = 0 for t ≤ 0), nonnegative, and integrable.1

Without loss of generality, we will require that
∫∞
0
γ(t)dt =

1. With this definition, A can be interpreted as the expected
number of events occurring in response to a previous event.
Note that when A = 0 this reduces to a Poisson process. For
A ≥ 1, the process is unstable in the sense that the event rate
will increase without bound because each event will produce
(in expectation) one or more additional events.

B. Multidimensional Hawkes processes

This model is easily extended to the case of a collection
of many related subprocesses by letting the rate of each

1While it is not strictly necessary to constrain ourselves to the case of
nonnegative µ, A, or γ(t), we choose to because doing otherwise requires
careful treatment to avoid or otherwise handle cases where λ(t) < 0.
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Fig. 1. Realization of a two-dimensional Hawkes process where each
subprocess is only excited by the other (the influence matrix is anti-diagonal).
Each + indicates an event. Notice how an event in one subprocess leads to
an increase in the CIF for the other, which often leads to clusters of activity.

subprocess be a function not only of its own history, but of the
other subprocesses’ histories as well. We can use such multi-
dimensional Hawkes processes to model a wireless networks
by viewing transmissions as the events of the process, where
each event is assigned to a subprocess based on the transmitter
from which the transmission originated. For N subprocesses,
the CIF of the ith subprocess generalizes (1) to

λi(t) = µi +

N∑
j=1

Aij

∑
k∈Kj

γ(t− tk) (2)

where Kj is the set of events on subprocess j. In this model,
each subprocess may have its own base rate µi and each
nonnegative parameter Aij quantifies how much subprocess
i reacts to subprocess j. We can think of A, sometimes
called the influence matrix or infectivity matrix, as a rep-
resentation of the topology of our network in the form of
a weighted adjacency matrix, where larger values indicate a
stronger connection. In our specific context, Aij > 0 means
that a transmission from transmitter j creates a temporary
increase in the probability of a transmission from transmitter
i. This results in small clusters of activity or “conversations”
between these transmitters. An example that illustrates this
phenomenon is given in Figure 1.

The stability condition generalizes naturally to the multidi-
mensional case. The event rate can increase without bound if
the spectral radius ρ(A) ≥ 1. Constraining ρ(A) < 1 ensures
stability, in which case the average event rate converges to
λ̄ = (I −A)−1µ.2

III. PARAMETER INFERENCE

In many scenarios of interest, the parameters µ and A
will not be known a priori. Thus, if we are given a set
of observations (i.e., a list of transmission times for each
transmitter), we would like to estimate the parameters that
best agree with this data.

2The asymptotic average event rate must satisfy λ̄ = Aλ̄ + µ for some
λ̄ ≥ 0. A solution always exists when ρ(A) < 1. Even when a solution exists
for ρ(A) ≥ 1, process variability will usually excite unstable modes.

A. Maximum-likelihood inference

A natural approach is to use maximum-likelihood estimation
to infer the parameter values. The negative log-likelihood of
a set of event observations in interval T on process i is

Li(µ,A|{t}) =

∫
T
λi(t)dt−

∑
k∈Ki
tk∈T

log λi(tk). (3)

For the ensemble of subprocesses in a multidimensional
Hawkes process, the negative log-likelihood is simply the
summation of (3) across all N subprocesses:

L(µ,A|{t}) =

N∑
i=1

Li(µ,A|{t}). (4)

Because λi(t) depends only on µi and the ith row of A,
we can optimize each subprocess likelihood independently.
This divides the optimization program minimizing (4) (which
optimizes over N(N + 1) parameters) into N independent
subproblems of the form in (3) (each optimizing over only
N +1 parameters). Each subproblem is a convex optimization
and is thus relatively straightforward to solve. One can readily
apply existing methods such as SPIRAL [6] or composite self-
concordant minimization [7]. The authors use an alternative
algorithm, consisting of projected quasi-Newton descent with a
backtracking line search (for step size) and where the Hessian
is approximated by its diagonal.

B. Inference accuracy

An important question when performing inference concerns
the number of events we must observe in order to learn
the parameters to a given accuracy. While precise theoretical
bounds addressing this question are not yet known, we can
share some empirical findings that will at least provide rough
guidelines as to how many observations may be necessary for
accurate inference in practice.

Clearly, in order to discover a connection between two
elements in the network (i.e., a nonzero entry in A), we
must see it used at least once. Thus, if there are r nonzeros
in A, then the coupon collector problem suggests we will
require at least O(r log r) events to observe all connections
“in action” at least once. More realistically, we will want to
see connections used several times so that we can deal with
ambiguous cases and avoid false-positives. In other words, we
expect the number of events necessary to accurately recover
the locations of the nonzeros in A to be slightly super-linear
in the number of nonzeros.

Figure 2 provides evidence of this behavior [8]. We consider
an 80 node network where bidirectional interconnections are
randomly added such that the expected total number of con-
nections in the network is r. Each connection has the same
strength, which is chosen so that the Hawkes model has a
stable event rate (ρ(A) < 1). Events are generated using a
multidimensional Hawkes process with these parameters and
we then compute the maximum likelihood estimates µ̂ and Â
by minimizing (4). We threshold the resulting entries of Â
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Fig. 2. Support recovery rate as a function of the number of events ob-
served per relationship. Each line denotes a different number of relationships
(nonzeros) in the 80 × 80 influence matrix.

and then compute the error rate in estimating the locations
of the nonzeros (the support recovery error rate). This is
repeated for many trials for each r, and number of observations
and the error rates are averaged and reported in the figure.
The horizontal axis is displayed in terms of the number of
events observed divided by r. The results of the simulation
are consistent with our intuition that the number of events is
weakly super-linear in r (something like O(r polylog r)).

There are a number of additional factors that likely play into
the scaling, as well. As the overall event rate increases, greater
ambiguity arises as it becomes more difficult to determine
which subprocess is responsible for exciting another. This can
eventually lead to a dramatic increase in the number of events
required to perform inference. Other factors that can affect this
requirement include the dynamic range of the entries of A and
model mismatch between the Hawkes process and the data.

IV. APPLICATION TO WIRELESS NETWORKS

In practice, we do not expect the data in a real-world
network to truly follow a Hawkes process. For example, there
will typically be additional structure in the data not captured by
the Hawkes model. However, a Hawkes process does capture
the “reciprocal” nature of the interactions we would expect
to observe and so, despite some degree of model mismatch,
it can be useful as an inference tool. Here we provide a
brief demonstration of the use of Hawkes processes applied to
realistic network communication data.

The data we will use is a trace created by the EMANE
network emulator.3 The network used consists of 29 inter-
connected nodes, arranged as in Figure 3, transmitting a
total of over 2.2 million packets. Packets are generated and
then propagated along the network from node to node to
reach their destination. We then strip the trace of all routing
information, except for the transmitter of each packet, to
provide a simulation of the kind of data we would be able
to observe in a typical wireless network surveillance scenario.

Maximum likelihood Hawkes parameters are estimated by
minimizing (4). We use an exponential decay kernel for γ(t),
though typically the exact shape of the kernel has a limited
impact relative to more general features such as its duration.

3http://www.nrl.navy.mil/itd/ncs/products/emane
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Fig. 3. Connections within the simulated EMANE network. Some links are
not utilized in the simulation.
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Fig. 4. Ground truth and recovered influence of EMANE-simulated data.

We find it useful to impose the constraint Aii = 0, since we
have no reason to believe that a radio will transmit information
in response to its own previous transmissions.

The notion is that nodes which appear to influence each
other strongly are likely connected. The ground truth and the
recovered influence are shown in Figure 4. While a relatively
small number of false-positives have persisted and some of the
weaker links have been missed, all of the strong connections
within the network have been recovered. We emphasize that,
even though the data was not generated according to a Hawkes
process, this model was able to exploit the reciprocity in the
network to discover most of the connections. Furthermore, it
has estimated the strength of those connections.

V. BEYOND NETWORK RECOVERY

We have shown how to use Hawkes processes to discover
connections in a network. There are a number of ways to
extend the techniques described above to solve other specific
problems that arise in the context of monitoring wireless
networks. We present a selection of such extensions below.

A. Detecting changes in the network

A benefit of using Hawkes processes to model data is
that they provide a means to asses the plausibility of an
observation. Using this, we can determine whether sets of
data are drawn from the same distribution. In the specific
context of wireless networks, we can determine if two sets of
observations are plausible under the same network topology.
This is useful if we wish to recognize when the topology of
the network changes.
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Fig. 5. Probability density functions showing how likelihood deviation can
change when single connections are added to or removed from nodes in
a network. Unchanged connections result in little deviation while changed,
especially added, connections results in significant deviation.

Toward this end, one possible measure of deviation between
two sets of data is the log-likelihood distance. We define
{µ̂1, Â1} and {µ̂2, Â2} to be the parameters that minimize (3)
for the two sets of observations {t}1 and {t}2. We then define
the deviation of observations {t}2 from the model suggested
by {t}1 (with regard to subprocess i) to be

di({t}1, {t}2) =
Li(µ̂1, Â1|{t}2)− Li(µ̂2, Â2|{t}2)

|{t}2|
. (5)

This expression is always nonnegative because {µ̂2, Â2} mini-
mizes (3) given {t}2. The denominator serves to appropriately
scale the deviation to account for the negative log-likelihood
scaling linearly with the number of events.

This metric can aid in detecting changes in network topol-
ogy. As an example, we consider a 50-node network modeled
by a multidimensional Hawkes process where the matrix A is
binary-valued (scaled to maintain stability) with 200 nonzeros
that are uniformly selected at random. We assume that we
know the base parameters exactly (i.e., we are given many
observations to estimate µ and A). We then modify 10%
of the nodes by adding an additional connection (adding a
nonzero to the corresponding row of A) and a different 10%
by subtracting a connection. We simulate 5000 events (25 per
connection) using these new parameters and we call the result-
ing observations {t}2. With an abuse of the notation of (5), we
calculate di({µ,A}, {t2}), the change in the likelihood of the
observed events when using the MLE parameters versus our
prior model. We categorize nodes as either unchanged (having
the same links in both the base and modified processes) or as
nodes with a removed or added connection, and examine the
distribution of the di’s for each group.

The distributions of the di’s, estimated from thousands of
trials, are presented in Figure 5. It is relatively easy to recog-
nize when a new connection is added (the “added” distribution
has little overlap with the “unchanged” distribution) but it is
somewhat more challenging to recognize when a connection
is removed. Intuitively, this phenomenon can be explained
by the fact that new connections can be identified quickly
when unexpected transmissions occur. A missing connection
requires detection of the more subtle absence of transmissions
that we would expect to see. In both cases, the modified
distributions deviate further from the unchanged distribution
as more events are observed, making the discrimination easier.

B. Incorporating additional structure via marks

The Hawkes process model we have considered up to this
point captures the “conversational” aspect of typical network
interactions. However, it may still be a poor representation of
actual behavior in some specific networks. For example, cell
phones do not exhibit a back-and-forth transmission pattern
(like a push-to-talk or packet radio network) but instead
establish one enduring transmission (or continuous string of
transmissions) for the entire interaction. We may further expect
that transmission lengths will be comparable between two in-
teracting nodes. The simple multidimensional Hawkes process
described earlier cannot model this additional structure.

We can incorporate such details into the model via the
addition of marks – additional information corresponding to
each event – to a Hawkes process. Marks are drawn from
some distribution and can depend on other event times and
marks. In fact, the multidimensional Hawkes process can be
viewed as a one-dimensional marked Hawkes process. In that
interpretation, the CIF of the process is λ(t) =

∑
i λi(t) and

the marks are the set memberships k ∈ Ki.
As a more elaborate example, we will describe a model that

better resembles cellular traffic. Assume that we can observe
the start and end times of calls on every phone, but not
with whom they are speaking (we will ignore base stations
because they convey the same call start/stop information). For
this example, let us assume that calls have a duration with
probability density function β(t), that a phone that receives a
call will answer within 20 seconds, and that both phones will
terminate the call within 5 seconds of each other. We will use
tk to indicate the start time of a call and vk to denote the end
time. A CIF that incorporates this assumption might be

λi(t, v) = µiβ(v−t)+
∑
j

Aij

20

∑
k∈Kj

I(0,20)(t−tk)I(−5,5)(v−vk)

where IS(t) is 1 when t ∈ S and 0 otherwise.
This model, while a closer match than a standard Hawkes

process, still has some limitations. It theoretically allows for
many phones to engage in the same call and allows individual
phones to be engaged in multiple calls at once (or even the
same call multiple times). It also doesn’t account for missed
calls or a number of other scenarios. But while this model
may be lacking in a generative sense, when we use it as an
inferential model we do not necessarily need to be concerned
by such cases since they do not typically arise in observed data.
What this model does impose (in the context of inference)
is the assumption that if two phones do not have start and
end times closely matched then they are very unlikely to
be involved in the same call. Incorporating this additional
assumption can dramatically improve the quality of inference.

While the base model for a Hawkes process may not
perfectly match some applications, marks provide a powerful
technique to extend it. With creativity, one can produce models
that impose a variety of additional structural assumptions.
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Fig. 6. The utilization of individual links in a network may not always be
the information we are after. For example, we might be more interested in
tracing the paths of packets through the network to find source/sink pairs.

C. Identifying chains of events and higher-level structure

Up to this point, we have focused on learning about the basic
connectivity structure of networks. However, this information
may not be exactly what we are interested in learning. For
example, in an ad-hoc wireless network we may be more
interested in differentiating between the source/destination of a
particular transmission and transmitters that are simply acting
as relays. In order to identify this kind of higher-level detail
about the flow of information through the network, it would
be extremely helpful to be able to determine the relationship
between events, in order to associate related events. This
information can then be used to discover large-scale structure
in the network (i.e., who is ultimately communicating with
whom), or to discover key nodes that act as relays.

We can do this using Hawkes processes via some simple
post-processing. As described more fully in [9], this can be
accomplished by first estimating the probability that pairs of
events are related. This is enabled by the insight that the
probability that event k from subprocess j resulted in event `
on subprocess i occurring is

P(k → `|k ∈ Kj , ` ∈ Ki) =
Aijγ(t` − tk)

λi(t`)
. (6)

Once these inter-event influences are computed, a dynamic
program can assemble related pairs into longer chains of
events. In this way, it is possible to discover when two nodes
communicate using one or more intermediate nodes as relays.

As an example, Figure 6 shows a network where we can
easily recover the connectivity pattern using a Hawkes process
model. However, we do not discover the underlying structure
of sources, sinks, and relays in the network until we determine
the influence individual events have on each other.

VI. CONCLUSIONS

We have presented a number of techniques and observa-
tions that may be helpful when modeling activity patterns in
wireless networks using Hawkes processes. This convenient
statistical model captures the behaviors common in communi-
cation networks and allows for useful inferences to be made
from limited information.

There are a variety of additional innovations not discussed
here. For example, there is no need to restrict ourselves to a
single kernel or a single influence matrix, additional terms
(involving different kernels and/or matrices) can be added
without affecting the convexity of the inference program.
These additional kernels and coefficients can dramatically
enhance the representative power of Hawkes models. It is even
possible to learn kernels from the data by inferring different
weights at different delays [10]. We leave the exploration of
such refinements in this context to future work.

MATLAB code that implements much of the function-
ality described in this paper is available for download at
http://users.ece.gatech.edu/∼mdavenport/software/.
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