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I. INTRODUCTION

In this work we provide a recovery guarantee for estimating the
parameters of an inhomogeneous Poisson arrival processes where
event arrival rates are dictated by a weighted combination of known
functions. Specifically, we consider the problem of estimating the
parameters x̄ ∈ RN of a Poisson process with rate

Rx̄(t) = g(t) +

N∑
n=1

x̄nγn(t) (1)

supported for t ∈ T with known real-valued functions g(t) and γn(t).
We base our estimate on a set of observed event times τ drawn from
this process, i.e., for any T ⊆ T the event times τ satisfy

|τ ∩ T | ∼ Poisson
(∫

T

Rx̄(t)dt

)
. (2)

Previous results have achieved reliable Poisson estimation mostly
by adapting existing estimators intended for independent noise (e.g.,
[1]) and studied this problem from the perspective of minimax
risk bounds that hold for arbitrary estimators [2]. Only recently
have recovery guarantees been established for the natural maximum-
likelihood estimator, which often outperforms other estimators in
practice [3]. However, these results apply only to Poisson counting
processes, in which event arrivals are histogrammed into bins (or,
equivalently in our framework, the rate function Rx̄(t) is piecewise-
constant).1

The guarantee we provide here generalizes parameter estimation
for Poisson counting processes to the more general setting of
continuous-time Poisson arrival processes (i.e., with infinite arrival
resolution). We provide a general guarantee but highlight that im-
proved results are possible when the solution is known to be sparse,
as is already known in the Poisson counting case. Additionally,
we note that our result requires fewer assumptions than previous
results for Poisson estimation. In particular, we do not require
the common constraint that the rate be a nonnegative combination
of nonnegative functions and our guarantee holds without oracle
knowledge regarding the true parameters.

II. RECOVERY GUARANTEE

Before stating our main result, we briefly fix some notation. The
negative log-likelihood of a set of observations τ under a candidate
parameter set x is

L(τ |x) =

∫
T
Rx(t)dt−

|τ |∑
m=1

logRx(τm). (3)

Our guarantee will depend on bounds Rmin and Rmax such that
Rmin ≤ Rx̄(t) ≤ Rmax. Letting ΣNk be the set of all subsets of

1It might seem possible to apply existing results merely by driving the “bin
widths” to zero, but for technical reasons this leads to degenerate results.

{1 . . . N} of cardinality at most k, we make the definitions

Γij =

∫
T
γi(t)γj(t)dt γk = max

s∈ΣN
k

sup
t∈T

√∑
n∈s

γ2
n(t).

We also say that {γn(t)} satisfies the restricted isometry property
with constant δk if

(1− δk)‖x‖22 ≤ xTΓx ≤ (1 + δk)‖x‖22 ∀‖x‖0 ≤ k. (4)

Using these definitions, we can state our main result as follows.
Theorem 1: Let cα be a value that depends only on a bound α ≥
ζγ2k

Rmink(1+δk)
. If we require that Rmin ≥ c2αkζγ

2
k(1+δk)

(1−δk)2
then any vector

x̂ satisfying ‖x̂− x̄‖0 ≤ k and L(τ |x̂) ≤ L(τ |x̄) will also satisfy

‖x̂− x̄‖2 ≤ cα
√
kζ(1 + δk)

1− δk
Rmax√
Rmin

(5)

with probability at least 1− (2k + 3) exp(−ζ).
Note that this theorem also yields a corollary for recovery based

on Poisson bin counts, where observations instead take the form
y ∼ Poisson(g + Ax̄) for a known vector g and RIP matrix A.
The corollary is trivially realized by restricting the functions g(t)
and γn(t) to be piecewise-constant.

III. DISCUSSION

The constrained maximum likelihood estimator

x̂ = arg min
x∈X

L(τ |x) (6)

will satisfy the theorem for any set X such that x̄ ∈ X . If X is
convex then the estimator (6) is also convex and is thus amenable to
convex optimization techniques (e.g., [4, 5]).

Taking advantage of sparsity (k < N ) with tractable programs
introduces some difficulties. One can choose the nonconvex set X =
{x : ‖x‖0 ≤ ‖x̄‖0} and satisfy the theorem with k ≤ 2‖x̄‖0, but the
optimization problem is combinatorial. Another option is X = {x :
‖x‖1 ≤ ‖x̄‖1}, for which a value k ≤ ‖x̄‖0 + ‖x̂‖0 can be used.
While this set is convex and encourages sparse solutions, directly
applying the results of Theorem 1 requires a guarantee controlling
the cardinality k of x̂. We leave such a guarantee to future work.

Finally, we also note that it is possible to increase Rmin arbitrarily
by increasing g(t). This can be accomplished by artificially adding
events from a homogeneous Poisson process to the observations τ .
If we add events with rate Rmax, we can change the Rmax/

√
Rmin

scaling to
√
Rmax, removing any dependence on the dynamic range.

While this is an interesting theoretical improvement, we suspect that
this additional noise is likely to degrade performance in practice.
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