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ABSTRACT

Suppose that we are able to obtain binary paired comparisons
of the form “x is closer to p than to q” for various choices
of vectors p and q. Such observations arise in a variety of
contexts, including nonmetric multidimensional scaling, un-
folding, and ranking problems, often because they provide a
powerful and flexible model of preference. In this paper we
give a theoretical bound for how well we can expect to esti-
mate x under a randomized model for p and q. We also show
that we can achieve significant gains by adaptively changing
the distribution for choosing p and q.

Index Terms— paired comparisons, ideal point models,
recommender systems, 1-bit compressive sensing, adaptivity

1. INTRODUCTION

1.1. The localization problem
In this paper we consider the problem of determining the loca-
tion of a point in Euclidean space based on distance compar-
isons to a set of known points, where our observations are non-
metric. Let x ∈ Rn be the true position of the point that we are
trying to learn, and let {(pi,qi) ∈ Rn×Rn : i ∈ [m]} be pairs
of known positions. Rather than directly observing the raw dis-
tances from x, i.e., ∥x− pi∥ and ∥x− qi∥, we instead obtain
only paired comparisons of the form ∥x−pi∥ < ∥x−qi∥. Our
goal is to estimate x from a set of such inequalities. Nonmetric
observations of this type arise in applications of multidimen-
sional scaling and triangulation [1]. These methods are often
applied in situations where we have a collection of items and
hypothesize that it is possible to embed the items in Rn in such
a way that the Euclidean distance between points corresponds
to their “dissimilarity,” with small distances corresponding
to similar items. Similarity might be derived from human
judgements and may be difficult to quantify.

As a motivating example, we consider the problem of esti-
mating a user’s preferences from limited response data. This
is, for instance, useful in a recommendation system or psy-
chological study. A common and intuitively appealing way to
model preference is via the ideal point model, which supposes

This work was supported by grants NRL N00173-14-2-C001, AFOSR
FA9550-14-1-0342, NSF CCF-1350616, CCF-1409406, and CMMI-1537261.
email: {massimino,mdav}@gatech.edu.

preference for a particular item varies inversely with distance
in Euclidean space [2]. We assume that the items to be rated
are represented by pi and qi and a user’s preference is mod-
eled as x, called the individual’s “ideal point”. This represents
a hypothetical “perfect” item satisfying all of the user’s cri-
teria for evaluating items. Using response data consisting of
paired comparisons between items (e.g., “user x prefers item
pi to item qi”) is a natural approach when dealing with human
subjects since it avoids requiring people to assign precise nu-
merical scores to different items (which is generally a difficult
task, especially when multiple factors impact preference [3]).
In contrast, human subjects find pairwise judgements much
easier to make [4]. Data consisting of paired comparisons is
also generated implicitly in contexts where the user has the
option to act on two (or more) alternatives; for instance they
may choose to watch a particular movie, or click a particular
advertisement, out of those displayed to them [5]. In such con-
texts, the “true distances” in the ideal point model’s preference
space are generally inaccessible directly, but it is nevertheless
possible to obtain an estimate of a user’s ideal point.

1.2. Main results
The fundamental question of interest in this paper is how
many paired comparisons we need (and how to choose them)
to add x to an existing embedding up to a desired degree
of accuracy. The item embedding could be generated using
various methods, such as multidimensional scaling applied to
a set of item features, or even using the results of previous
paired comparisons via an approach like that in [6]. Given an
embedding of ℓ items, there are a total of

(
ℓ
2

)
= Θ(ℓ2) possible

paired comparisons. In a system with thousands (or more)
items, it will be prohibitive to acquire this many comparisons
as a typical user will likely only provide comparisons for a
handful of items. Fortunately, in general we can expect that
many, if not most, of the possible comparisons are redundant.

Any precise answer to this question will depend on the
underlying geometry of the item embedding. Each compari-
son essentially divides Rn in half, indicating on which side of
a hyperplane x lies, and some arrangements of hyperplanes
will yield better tessellations of the preference space than will
others. Thus, to gain some intuition on this problem with-
out reference to the geometry of a particular embedding, we
instead consider a probabilistic model where the items are
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generated at random from a particular distribution. In this case
we show that under certain natural assumptions on the distri-
bution, it is possible to estimate the location of any x to within
an error of ϵ using a number of comparisons which, up to log
factors, is proportional to n/ϵ. This is essentially optimal, so
that no set of comparisons can provide a uniform guarantee
with significantly fewer comparisons. We then describe a sim-
ple extension to an adaptive scheme where we actively select
the comparisons (manifested here in adaptively altering the
mean and variance of the distribution generating the items) to
substantially reduce the required number of comparisons.

1.3. Related work
It is important to note that the ideal point model, while similar,
is distinct from the low-rank model used in matrix comple-
tion [7, 8]. Although both models suppose user choices are
guided by a number of attributes, the ideal point model leads
to preferences that are non-monotonic functions of those at-
tributes. The ideal point model suggests that each feature has
an ideal level; too much of a feature can be just as undesirable
as too little. It is not possible to obtain this kind of performance
with a traditional low-rank model, though if points are limited
to the sphere, then the ideal point model can duplicate the per-
formance of a low-rank factorization. There is also empirical
evidence that the ideal point model captures behavior more
accurately than factorization based approaches do [9, 10].

There is a large body of work that studies the problem
of learning to rank items from various sources of data, in-
cluding paired comparisons of the sort we consider in this
paper [11, 12, 13]. We first note that in most work on rankings,
the central focus is on learning a correct rank-ordered list for
a particular user, without providing any guarantees on recov-
ering a correct parameterization for the user’s preferences as
we do here. While these two problems are related, there are
natural settings where it might be desirable to guarantee an
accurate recovery of the underlying parameterization (x in our
model). For example, one could exploit these guarantees in
the context of an iterative algorithm for nonmetric multidimen-
sional scaling which aims to refine the underlying embedding
by updating each user and item one at a time (e.g., see [14]),
in which case an understanding of the error in the estimate
of x is crucial. Moreover, we believe that our approach pro-
vides an interesting alternative perspective as it yields natural
robustness guarantees and suggests simple adaptive schemes.

Also closely related is the work in [15, 16, 17] which con-
sider paired comparisons and more general ordinal measure-
ments in the similar context of low-rank factorizations. Finally,
while seemingly unrelated, we note that our work builds on
the growing body of literature of 1-bit compressive sensing. In
particular, our results are largely inspired by those in [18, 19],
and borrow techniques from [20] in the proofs of some of
our main results. We emphasize that in our model, both the
direction and length of the preference vector are recoverable
from the paired comparisons; multiplying a user’s point by a
scalar will likely cause many comparisons to change.

2. A RANDOMIZED OBSERVATION MODEL

We will consider the “noise-free” setting where a user always
prefers the item closest to the user’s ideal point x with probabil-
ity 1. In this case we can represent the observed comparisons
mathematically by letting Ai(x) denote the ith observation,
which consists of comparisons between pi and qi, and setting

Ai(x) := sign
(
∥x− qi∥2 − ∥x− pi∥2

)
.

We will also use A(x) := [A1(x), · · · ,Am(x)]T to denote
the vector of all observations resulting from m comparisons.
If we set āi := (pi − qi) and τ̄i :=

1
2 (∥pi∥2 − ∥qi∥2), then

we can re-write our observation model as

Ai(x) = sign
(
2āTi x− 2τ̄i

)
= sign

(
āTi x− τ̄i

)
. (1)

This is reminiscent of the standard setup in one-bit compressive
sensing (with dithers) [18, 19] with the important differences
that: (i) we do not make any kind of sparsity or other structural
assumption on x and, (ii) the “dithers” τ̄i, at least in this for-
mulation, are dependent on the āi, which results in difficulty
applying standard results from this theory to this setting. How-
ever, many of the techniques from this literature will be helpful
in analyzing this problem. We consider a randomized observa-
tion model where the pairs (pi,qi) are chosen independently
with i.i.d. entries drawn according to a normal distribution,
i.e., pi,qi ∼ N (0, σ2I). In this case, we have that the en-
tries of our sensing vectors are i.i.d. with āi(j) ∼ N (0, 2σ2).
Moreover, if we define bi = pi + qi, then we also have that
bi ∼ N (0, 2σ2I), and 1

2 ā
T
i bi =

1
2 (∥pi∥2 − ∥qi∥2) = τ̄i. To

simplify, we re-normalize by dividing by ∥āi∥, i.e., setting
ai := āi/ ∥āi∥, τi := τ̄i/ ∥āi∥, and

Ai(x) = sign
(
aTi x− τi

)
.

It is easy to see that ai is distributed uniformly on the sphere
Sn−1 = {a ∈ Rn : ∥a∥ = 1}. Since āi and bi are inde-
pendent, ai and bi are also independent. Moreover, for any
unit-vector ai, if bi ∼ N (0, 2σ2I) then aTi bi ∼ N (0, 2σ2).
Thus, we must have τi ∼ N (0, σ2/2), independent of ai,
which is the key insight that enables the analysis below.

3. GUARANTEES UNDER THE RANDOM MODEL

We now state our main result concerning localization under
the noise-free random model from Section 2.

Theorem 1 (Performance with Gaussian items). Suppose m
item point pairs {(pi,qi)}mi=1 are generated by drawing each
pi and qi independently from N (0, σ2I) where σ2 = 2R2/n.
There exist constants c and C such that if ϵ > 0, η > 0, and

m ≥ R

Cϵ(1− c/
√
n)

(
n log

3R
√
n

cϵ
+ log

1

η

)
, (2)
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then with probability at least 1 − η, for all pairs of signals
x,y ∈ BR := {u ∈ Rn : ∥u∥ ≤ R} such that A(x) = A(y),

∥x− y∥ ≤ ϵ.

The key message of this theorem is that if one chooses
the variance σ2 of the distribution generating the items appro-
priately, then it is possible to estimate x to within ϵ using a
number of comparisons that is nearly linear in n/ϵ. A natu-
ral question is what would happen with a different choice of
σ2. In fact, this assumption is critical—if σ2 is substantially
smaller the bound quickly becomes vacuous, and as σ2 grows
much past 2R2/n the bound begins to become steadily worse.
It should also be somewhat intuitive: if σ2 is too small, then
nearly all the hyperplanes induced by the comparisons will
pass very close to the origin, so that accurate estimation of
even ∥x∥ becomes impossible. On the other hand, if σ2 is too
large, then an increasing number of these hyperplanes will not
even intersect the ball of radius R in which x is presumed to
lie, thus yielding no new information.

Lemma 2 ([21]). Let w, z ∈ Bn
R be distinct and non-zero. Fix

δ > 0 and let Bδ(w) be the points with Euclidean distance
at most δ from w: Bδ(w) := {u ∈ BR : ∥u−w∥ ≤ δ}.
Denote by P1,

P1 := P{∀u ∈ Bδ(w),∀v ∈ Bδ(z) : Ai(u) ̸= Ai(v)},

the probability that all points u and v, which are within δ of
w and z respectively, differ by a random observation denoted
by Ai (i.e., the two δ-balls are separated by hyperplane i). Set
ϵ0 ≤ ∥w − z∥. Then,

P1 ≥ ϵ0 − 8δ
√
2n

16
√
12πeR

.

Proof of Theorem 1. Let U be a δ-covering set for BR with
|U | ≤ (3R/δ)n. For any pair x,y ∈ BR there exist w, z ∈
U such that ∥x−w∥ ≤ δ and ∥y − z∥ ≤ δ. Note that
∥w − z∥ ≥ ∥x− y∥ − 2δ. Assume m satisfies (2) as in
Theorem 1. Suppose that ∥x− y∥ > ϵ for some ϵ > 0. Let P1

be defined as in Lemma 2; setting ϵ0 = ∥w − z∥, it follows
that P1 ≥ (C1ϵ0 + C2δ

√
n)/R. We have

P1 ≥ (C1(∥x− y∥ − 2δ) + C2δ
√
n)/R.

Let P ′
1 be the conditioning of P1 on vectors x,y farther than

ϵ apart. We consider the opposite of this event and set δ =
c0ϵ/

√
n for some c0 > 0,

1− P ′
1 ≤ 1− (C1(ϵ− 2c0ϵ/

√
n) + C2c0ϵ0)/R,

This controls the probability that a single comparison fails to
distinguish points x and y. Let Pm be the probability that m
such comparisons are identical. Since the comparisons are
independent, we extend the previous inequality over m events,

Pm ≤
(
1− ((C1 + C2c0)ϵ− 2C1c0ϵ/

√
n)/R

)m
.

Now by a union bound over pairs (w, z) in the covering set
with |U × U | ≤ (3R/δ)2n,

Pt ≤
(
3R

δ

)2n (
1− Cϵ(1− c/

√
n)/R

)m
≤ exp

(
2n log

3R

δ

)
exp

(
−Cϵm(1− c/

√
n)/R

)
= exp

(
2n log

3R
√
n

cϵ
− Cϵm(1− c/

√
n)/R

)
.

Upper bounding this by η,

n log
3R

√
n

cϵ
− Cϵm(1− c/

√
n)/R ≤ log η

=⇒ m ≥ R

Cϵ(1− c/
√
n)

(
n log

3R
√
n

cϵ
+ log

1

η

)
C and c are constants that are linked by Lemma 2 but do not
depend on n.

4. ADAPTIVE LOCALIZATION

Here we describe a simple extension to our previous (noiseless)
theory and show that if we modify the mean and variance of
the sampling distribution of items over a number of stages, we
can localize adaptively and produce an estimate with many
fewer comparisons than possible in a non-adaptive strategy.
We assume t stages (t = 1 for the non-adaptive approach).
At each stage ℓ ∈ [t] we will attempt to produce an estimate
x̂ℓ such that ∥x− x̂ℓ∥ ≤ ϵℓ where ϵℓ = Rℓ/2 = R2−ℓ, then
recentering to our previous estimate and dividing the problem
radius in half. In stage ℓ, each pi,qi ∼ N (x̂, 2R2

ℓ/nI). After
t stages we will have ∥x− x̂t∥ ≤ R2−t =: et with probability
at least 1− tη.

Theorem 3. Let x ∈ Rn, ∥x∥ ≤ R and η > 0. There
are constants c and C such that if ϵt > 0 is the target final
accuracy and m total comparisons are taken following the
adaptive scheme where

m ≥ 2 log2(2R/ϵt)

C(1− c/
√
n)

(
n log

6
√
n

c
+ log

1

η

)
,

then with probability at least 1− log2(2R/ϵt)η, for any esti-
mate x̂ satisfying A(x̂) = A(x),

∥x− x̂∥ ≤ ϵt.

Proof. The adaptive scheme uses t = ⌈log2(R/ϵt)⌉ ≤
log2(2R/ϵt) stages. Assume each stage is allocated mℓ com-
parisons. By Theorem 1, localization at each stage ℓ can be
accomplished with high probability when

mℓ ≥
Rℓ

Cϵℓ(1− c/
√
n)

(
n log

3Rℓ
√
n

cϵℓ
+ log

1

η

)
=

2

C(1− c/
√
n)

(
n log

6
√
n

c
+ log

1

η

)
.
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This condition is met by giving an equal number of com-
parisons to each stage, mℓ = ⌊m/t⌋. Each stage fails with
probability η. By a union bond, the target localization fails
with probability at most tη. Hence, localization succeeds with
probability at least 1− tη.

Theorem 3 implies madapt ≍ (n log n) log2(R/ϵt) compar-
isons suffice to estimate x to within ϵt. This represents an
exponential improvement in terms of number of total com-
parisons as a function of the target accuracy, ϵt, as compared
to a lower bound on the number of required comparisons,
mlower := 2nR/(eϵt), which can be shown to hold for any
non-adaptive strategy through a simple volumetric argument.

5. SIMULATIONS

Given a set of comparisons A(x), we may produce an estimate
x̂ by finding any feasible point satisfying all the paired com-
parisons. A simple approach is the following convex program:

x̂ = argmin
z

∥z∥2 subject to Ai(x)(a
T
i z− τi) ≥ 0 ∀i.

This is easy to solve since the constraints are simple linear in-
equalities and the feasible region is convex. We do not consider
noise in these simulations, but in situations where comparison
inconsistencies may exist, this optimization program could be
made more robust by introducing slack variables [1].

5.1. Adaptive generation

In Fig. 1, we show the effect of varying levels of adaptivity,
starting with the completely non-adaptive approach up to using
10 stages where we progressively re-center and re-scale the
hyperplane offsets. In each case, we generate x ∈ R3 where
∥x∥ = 0.75 and choosing the direction randomly. The total
comparisons are held fixed and are split as equally as possible
among the number of stages (preferring earlier stages when
rounding). We set σ2 = R = 1 and plot the average over
700 independent trials. As the number of stages increases,
performance worsens if the number of comparisons are kept
small due to bad localization in the earlier stages. However,
if the number of total comparisons is sufficiently large, an
exponential improvement over non-adaptivity is possible.

5.2. Adaptive selection with a fixed non-Gaussian dataset

In Fig. 2, we demonstrate the effect of adaptively choosing
item pairs from a fixed synthetic dataset over four stages versus
choosing items non-adaptively.We first generated 10,000 items
uniformly distributed inside the 3-dimensional unit ball and a
signal x ∈ R3 where ∥x∥ = 0.4. In both cases, we generate
pairs of Gaussian points and choose the items from the fixed
dataset which lie closest to them. In the adaptive case over four
stages, we progressively re-center and re-scale the generated
points; the initial σ2 is set to the variance of the dataset and
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Fig. 1: Error norm ∥x− x̂∥ versus total comparisons for a sequence
of experiments with varying number of adaptive stages.
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Fig. 2: Mean error norm ∥x− x̂∥ versus total comparisons for non-
adaptive and adaptive selection. Dotted lines denote stage boundaries.

is reduced dyadically after each stage. The total number of
comparisons is held fixed and is split as equally as possible
among the number of stages (preferring later stages when
rounding). We plot the mean error over 200 independent-
dataset trials.

6. DISCUSSION

We have shown that given the ability to generate item pairs
according to a Gaussian distribution with a particular variance,
it is possible to localize a point x to within ϵ with roughly n/ϵ
paired comparisons (ignoring log factors). If one is able to
shift the distribution of the items drawn, adaptive localization
gives a substantial improvement over a non-adaptive strategy.
To directly implement such a scheme, one would require the
ability to generate items arbitrarily in Rn. While there may be
some cases where this is possible (e.g., in market testing of
items where the features correspond to known quantities that
can be manually manipulated, such as the amount of various
ingredients in a beverage) in most settings considered by rec-
ommendation systems the only items which can be compared
belong to a fixed set of points. While our theory would still
provide rough guidance as to how accurate of a localization
is possible, the algorithm must be adapted, as done in Sec-
tion 5.2. There are many other ways that the adaptive scheme
could be modified to account for this restriction. We leave the
exploration of additional techniques for future work.
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