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Abstract—Compressive sensing (CS) is an alternative to Shan-
non/Nyquist sampling for the acquisition of sparse or compress-
ible signals. Instead of taking periodic samples, CS measures
inner products with M random vectors, where M is much smaller
than the number of Nyquist-rate samples. The implications of
CS are promising for many applications and enable the design
of new kinds of analog-to-digital converters, imaging systems,
and sensor networks. In this paper, we propose and study a
wideband compressive radio receiver (WCRR) architecture that
can efficiently acquire and track FM and other narrowband
signals that live within a wide frequency bandwidth. The receiver
operates below the Nyquist rate and has much lower complexity
than either a traditional sampling system or CS recovery system.
Our methods differ from most standard approaches to the
problem of CS recovery in that we do not assume that the
signals of interest are confined to a discrete set of frequencies,
and we do not rely on traditional recovery methods such as `1-
minimization. Instead, we develop a simple detection system that
identifies the support of the narrowband FM signals and then
applies compressive filtering techniques based on discrete prolate
spheroidal sequences to cancel interference and isolate the signals.
Lastly, a compressive phase-locked loop (PLL) directly recovers
the FM message signals.

I. INTRODUCTION

Wideband radio receivers collect large segments of the radio
frequency (RF) spectrum to detect, characterize, and extract
information from signals of interest (SOIs). These devices are
commonly used in both commercial and military systems to
monitor signalling activity across a wide bandwidth. Ideally,
such receiver systems should be able to monitor the entire
bandwidth of interest and report on signals as soon as trans-
mission is initiated.

Unfortunately, practical limitations often make such moni-
toring impossible. For example, collection of bandwidths on
the order of 300–400 MHz demand analog-to-digital convert-
ers (ADCs) operating at rates close to 1 GHz. At these rates,
state-of-the-art ADCs produce samples with relatively low
dynamic range while also consuming significant power. The
data rates and power requirements of such ADCs typically
lead to increases in system size and weight. In place of a
single ADC, alternative receiver implementations can be built
with a parallel bank of low-rate ADCs. While increasing the
achievable dynamic range, the extra hardware components
also further increase the size, weight, and power consumption
of the system. In addition to their hardware demands, both
of these approaches also produce a deluge of data that can
overwhelm downstream processing and information extraction
algorithms.

To overcome these challenges, system designers typically
build wideband receivers that scan through the spectrum one
small segment at a time. Such receivers have smaller effective
instantaneous bandwidth (EIBW), namely the usable band-
width monitored at any time. This approach reduces the burden
on the receivers’ hardware and processing algorithms and
makes “wideband” system behavior achievable in practice. The
tradeoff, of course, is that signal energy cannot be captured if
it is transmitted outside of the current tuning of the receiver’s
EIBW.

Compressive sensing (CS) is a relatively new framework for
signal acquisition that offers a practical way to design wide-
band receivers that are able to monitor the entire bandwidth
of interest without resorting to a scanning approach [1, 2].
Conventional Nyquist-based sampling assumes that the SOIs
are bandlimited and dictates that in order to fully acquire
the information in those signals the sampling rate needs to
be at least twice the total collected bandwidth. CS assumes
that rather than simply being bandlimited, the SOI is sparse
in some basis, i.e., the signal has a small number of non-
zero components when represented in that basis (see Fig. 5
(a) for a Fourier basis example). The underlying components
can be recovered as long the sampling rate is proportional
to the number of nonzero components [3]. In our setting,
this means that a sample rate of at least O(B log(W/B)) is
sufficient, where B is the sum of the SOI bandwidths and
W is the total collection bandwidth. While real-world signals
are never truly sparse (they cannot be completely bandlimited
and they are always embedded in a noisy environment), it is
sufficient for the SOI to be compressible, meaning that it can
be well-approximated by a sparse combination of bandlimited
signals [4].

CS offers the potential for a massive data rate reduction,
which can significantly reduce the requirements on a receiver
system’s hardware and processing algorithms. Thus, a single
wideband compressive radio receiver (WCRR) can operate at a
low data rate while still monitoring a very wide bandwidth as
long as the total active signal bandwidth remains sufficiently
small. However, current CS approaches typically rely on
computationally expensive nonlinear algorithms to reconstruct
the signal from the CS samples.

In this paper, we discuss the architecture and algorithmic
approach for a WCRR that performs processing such as
filtering and detection entirely in the compressive domain
without first reconstructing the signal, thereby avoiding the
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Fig. 1. Generic wideband receiver architecture. Dashed components are not
addressed in this work.

brunt of the computational cost of reconstruction . We further
show that in the case of FM signals we can directly demodulate
and recover the baseband signal in the compressive domain.
Experimental results show the outcome of applying these
algorithms in simulated collection scenarios.

In the next section we describe the system architecture and
the individual components of the WCRR. In Section III we
present experimental results to demonstrate the performance
of our system. We conclude with a discussion in Section IV.

II. WIDEBAND COMPRESSIVE RADIO
RECEIVER COMPONENTS

A. Architecture

The generic architecture of a wideband receiver is shown in
Fig. 1. The first component in the receiver consists of analog
hardware to tune to and isolate the wide collection bandwidth.
The analog output of this RF front end is then converted to
digital samples. In a conventional receiver, the rate at which
these samples are acquired must exceed the Nyquist rate of
the analog signal, while the WCRR will sample at a much
lower rate as described below. After optionally nulling out the
effects of known interfering signals, the receiver detects the
presence of signals in the monitored bandwidth. In the case
of single-channel receivers, numerous techniques including
spectral energy detection can be used. The receiver usually
has some a priori information about the SOIs. For example,
a directed receiver knows precisely where to look for signals
and only needs to detect if the signal is present. Once a SOI
has been detected, the receiver filters it, classifies its type, and
applies the appropriate demodulation to extract the necessary
information from the signal.

In the sections below, we outline and describe a WCRR that
processes signals entirely in the compressive domain, without
the need for the computationally expensive reconstruction
algorithms normally used in CS systems. We demonstrate
methods for compressive sampling, interference cancelation,
signal detection, filtering, and demodulation. RF front end
processing and compressive signal classification are not dis-
cussed. The former is a well-established technology, while the
latter has been explored for more general scenarios in several
previous publications such as [5, 6] .

B. Compressive Sampler

Of the several practical hardware architectures for compres-
sive sampling, the receiver proposed in this work uses the
random demodulator architecture [7]. Other candidates include
random filtering [8], random sampling [9], and random con-
volution [10, 11]. The canonical sub-Gaussian random matrix

Pseudorandom
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y[n]

Quantizer

ADC

Fig. 2. Random demodulator block diagram.

approach [12] is highly useful as a gold standard methodology
but is typically impossible to implement in practical receivers.

The four key components of a random demodulator, il-
lustrated in Fig. 2, are (i) a pseudo-random ±1 “chipping
sequence” generator, (ii) an analog mixer (or modulator) to
modulate the input signal by the chipping sequence, (iii) an
integrate-and-dump circuit, and (iv) a low-rate ADC composed
of a simple sample-and-hold circuit followed by a quantizer.
While the back-end ADC operates at a low rate, the chipping
sequence and the modulator must operate at or above the
Nyquist rate of the system’s collection bandwidth W . With
current technology it is easier to build a high-rate modulator
in hardware than a high-rate ADC. In fact, many systems,
most notably CDMA communication devices, already use
components of this front end.

Mathematically, we can equivalently describe our sampling
system as a linear operator Φ that maps Nyquist rate samples
of x(t) to a discrete sequence of measurements y[n] and then
quantizes them. In this work we assume that all processing
is performed on a finite window of data, in which case the
finite set of Nyquist rate samples are simply a vector in RN .
This leads to a finite window of M measurements. Using this
discrete formulation, the random demodulator is equivalent
to multiplying the Nyquist rate samples x[n] with a random
sequence of ±1’s and then summing every N/M sequential
coefficients to obtain M measurements. In this case Φ can
be represented as an M × N matrix where N = LM ,
with L representing the decimation factor, or the ratio of the
Nyquist rate to the sampling rate of the ADC in the random
demodulator. For example, in the case where M = 3 and
L = 3, we can write Φ as the 3× 9 matrix

Φ =

 −1 1 −1
−1 −1 1

1 1 −1

 .

The fact that we can express Φ simply as a matrix applied
to a window of Nyquist rate samples will prove important
throughout this paper, as it will allow us to develop a number
of simple detection, interference cancellation, filtering, and
demodulation schemes.

C. Detection

We now turn to the problem of detecting approximately
where the SOIs lie within the collection bandwidth. This will
allow us to further filter and process the data to recover each
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SOI. The signal energy detector operates on the vector y of
M samples obtained from the compressive sampler. Let t
denote the vector of time values corresponding to the sampling
locations for the implicit Nyquist rate sampled version of x.
We then consider a grid of possible frequency values {fk}K

k=1

and compute

S(k) = |〈Φej2πfkt, y〉|2 = |yT Φej2πfkt|2 (1)

for k = 1, . . . ,K, i.e, we simply correlate y against a series of
vectors that are the outputs of the compressive sampler given
pure sinusoid inputs. The result is a length-K vector S that
provides an estimate of the power in the measurements at a
sequence of frequencies of interest. This step is reminiscent
of the first step of many greedy algorithms for CS recovery,
for example see [13, 14]. Clearly, this sequence of frequencies
should be sufficiently dense to be able to detect narrowband
pulses. On the other hand, the spacing between frequencies
should be relatively large in order to reduce the required num-
ber of computations. This allows for a tradeoff between the
accuracy of the estimate S and the speed of its computation.

Once we have computed S, the detection problem can be
solved via a variety of classical techniques. In our experiments
we focus on a simple thresholding of S to identify the center
frequencies of the detected signals.

D. Interference Cancellation and Filtering

Wideband radio receivers handle multiple narrowband sig-
nals within a large bandwidth; in order to perform further
processing on a particular SOI, we must be able to filter
out the remaining narrowband signals that are not of interest.
Interference could also arise when some of the narrowband
signals are extraneous, or possibly just not of interest at the
time. For example, a television signal could represent high-
power interference if it lies in the collection bandwidth. Or
we may just wish to focus on a particular signal or frequency
band for demodulation and ignore others, such as monitoring
a particular communication band. In each scenerio, we can
decompose the signal x as x = xS + xI , where xS is the
desired signal and xI represents any component not of interest
at the moment.

The procedure for filtering in the compressive domain is dif-
ferent than standard bandpass filtering. Rather than designing
an FIR or IIR filter for a given sampling frequency, a projec-
tion matrix is computed such that the spectral components of
the interfering signal lie in its nullspace.

In order to do this, we must first obtain a basis for the
subspace in which the interference lives. We will model
interference as a length-N window of a bandlimited signal
(with band limits f1 and f2). Strictly speaking, such signals
do not live in a subspace of RN , but one can show that they live
very close to a low-dimensional subspace spanned by the first
J discrete prolate spheroidal sequences (DPSS’s) [15]. The
DPSS’s are the finite-length vectors that are simultaneously
most concentrated in time and in frequency on the desired
baseband bandwidth. In general, we can generate N DPSS’s,
but typically J � N is sufficient to capture most of the energy

in a bandlimited function. While there do exist rules of thumb
for setting J , we will leave J as a parameter to be set by
the user, with larger J allowing for better suppression of the
undesired signal but also leading to slightly more distortion
of the desired signal. We will let Ψ denote the J ×N DPSS
basis, which is generated by modulating baseband DPSS’s by
a cosine of frequency (f2 − f1)/2 [16]. If we have multiple
interferers, then we can simply generate a basis for each and
concatenate them into a matrix Ψ.

Once we have obtained the basis Ψ, interference cancel-
lation can be performed as detailed in [17] by forming the
matrix

P = I − ΦΨ(ΦΨ)†, (2)

where A† denotes the pseudoinverse A† = (AT A)−1AT . This
will cancel the interference while preserving the SOI.

Note that the matrix P in (2) is an orthogonal projec-
tion. This is particularly useful, since after filtering we have
Py = PΦx. One might expect that in order to perform the
detection strategy described in (1), we would need to compute
PΦej2πfkt. However, since P is an orthogonal projection
matrix we obtain

〈Py, Pw〉 = wT PT Py

= wT P 2y

= wT Py

= 〈Py, w〉.

Therefore, we can use the same detection strategy as in
Sec. II-C after we have filtered the measurements without
any modifications. This will also be an extremely useful fact
when attempting to demodulate the SOIs, as described in the
following section.

E. Demodulation

For demodulation of FM modulated signals, we introduce
a new family of phase-locked loops (PLLs) based on com-
pressive sensing. As shown in Fig. 3, a conventional PLL
computes the phase difference between an input signal and a
PLL-produced oscillator signal. This phase difference is used
in a feedback loop to update the phase of the oscillator. In this
way, the PLL tracks the phase of the input signal.

The phase detector in a PLL can be interpreted as computing
a weighted inner product between the Nyquist-rate input
samples x[n] and the estimated signal samples u[n] generated
by the oscillator. The restricted isometry property (RIP) of
CS says that the standard inner product between x[n] and
u[n] will be very close to that of the compressively sampled
versions of x[n] and u[n] [6]. Inspired by this property, we
construct a compressive sensing phase-locked loop (CS-PLL)
by inserting two compressive samplers into the conventional
PLL: one operating on the analog input signal x(t) to produce
the CS samples y[m] and another operating on the discrete-
time oscillator signal to produce v[m] [18]. The index m
indicates the lower compressive sample rate while n indicates
sampling at the input signal’s Nyquist rate. Connecting the
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CS-PLL into the receiver architecture, the phase detector’s
y[m] input is simply the output of the receiver’s random
demodulator component.

Phase
Detector

Loop Filter /
Phase Update

Oscillator

𝜃[𝑛] 𝜃�[𝑛] 
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Fig. 3. Conventional PLL block diagram
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Fig. 4. CS-PLL block diagram

To conserve the inner product as indicated by the RIP,
efforts need to be taken to ensure that the CS-PLL’s two
compressive sampling operations are as similar as possible. We
achieve this by inputting the same pseudo-random sequence
to the two multipliers, using the same impulse response in the
two integrators, and by synchronizing the low-rate sampling
in the two ADCs. Additionally, the sampling operation in the
feedback loop must be aligned appropriately to account for any
processing delays that occur between the random demodulator
and the CS-PLL. In the setup shown in Fig. 4, the compressive
samplers have both analog and digital inputs; some calibration
may be required, but in general the behaviors of these two
samplers will resemble one another.

As with the classical PLL, the CS-PLL computes the phase
estimate inner product using a multiplier and a filter. Generally,
the filter can be nonlinear and/or time-varying. In our receiver,
we model the compressive sampler digitally and a use a linear
time-invariant filter. This filter mimics the characteristics of the
loop filter in the high-rate traditional PLL, but with frequency
scaling to adjust the filter bands for the new lower sample rate.
The resulting phase estimate is given by

θ̂[m] =
∑

k

y[k]v[k]h[m− k], (3)

where h[m], the linear filter impulse response, acts as the
kernel of the weighted inner product.

PLLs are designed to obtain the frequency and/or phase
of the input signal after a reasonable number of iterations
and to retain this information as the signal progresses through
time. For applications such as FM demodulation, the baseband
message signal can be read directly from the error signal
θ[m] of the PLL when the correct frequency is maintained.

When the PLL is outputting the desired signal it is said to
be “locked.” Notably, the error signal θ[m] is produced at the
lower compressive sample rate and not the Nyquist rate of the
signal produced by the oscillator.

Out-of-band noise issues are easier to address in conven-
tional PLLs vs. CS-PLLs. Systems typically have an estimate
of the target signal’s center frequency prior to applying a
PLL (in our receiver this value is output from the detection
stage). Since PLLs work on relatively narrowband signals, a
conventional PLL can use this frequency estimate to apply
a traditional bandpass filter that eliminates out-of-band noise
ahead of PLL processing. For a CS-PLL this problem is not so
simple. If we know the center frequency prior to compressive
sampling, then we can apply an analog bandpass filter similar
to the conventional system’s digital bandpass filter. However,
this solution is less desirable as (i) tunable analog filters are
not as easy to incorporate and (ii) by filtering at the front-end
we lose the ability to monitor the entire bandwidth of interest.
Hence, aside from the ability of the previously mentioned
interference cancellation and filtering algorithms, out-of-band
noise will unavoidably contribute to the error in recovered
signal. This is similar to the “noise-folding” effect that has
been observed in traditional CS recovery [3].

III. EXPERIMENTAL EVALUATION

The principal inspiration for our experiments is to show
that the algorithms discussed in this paper can be effectively
combined into a system that performs the job of a traditional
wideband receiver but at a greatly reduced data rate. The
assumptions we make in our setup are motivated by the desire
to simply demonstrate the feasibility of the system. The reader
will likely see many improvements that can (and should) be
made to increase the utility and robustness of the receiver
and its algorithms in real-world operational contexts; some
of these are discussed at the end of this work. In many
cases, these improvements do not change the fundamental
algorithmic work under exhibit here.

A. Scenario

In the simulation results that follow, the WCRR monitors
an EIBW of 300 MHz in which 5 FM-modulated voice
signals are transmitting at carrier frequencies unknown to
the receiver. There is also a 140 kHz wide interferer at 200
MHz that is at least 35 dB stronger than any other signal.
Each signal occupies roughly 12 kHz of bandwidth. The
300 MHz bandwidth is modeled as being acquired from an
aerial platform operating at a distance of 8 miles from the
target signals with line of sight to each signal. The WCRR
system compressively samples at a rate of 30 MHz (20 times
undersampled).

Our experiments assume an input of a tuned and down-
converted RF signal. Additionally, we assume the signal is
collected in time-limited blocks, that the captured signals are
known to be FM modulated, that there are a known number
of signals in the collection bandwidth, and that the signals are
separated by at least 30 kHz.
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B. Results

In Figure 5 we show the estimated power spectral density
(PSD) at each stage in the WCRR system. Note that in (b)
the effect of the large interferer dominates the PSD. However
when we cancel it first (see (c)), we are able to properly
acquire the smaller SOIs. As shown, our original SNR of
40 dB is reduced to ≈ 25 dB, approximately a 15 dB loss.
This is expected, as in theory undersampling by a factor of 20
should result in noise folding of approximately 13 dB (3 dB
per octave (decimation by 2) for a total of log2(20) octaves)
[3]. This mirrors the effects of traditional downsampling and
is not exclusive to compressive sensing. In (d) the signal at
175 MHz is kept and the other signals are filtered out.

The signal acquired after detection can then be supplied
to the CS-PLL for demodulation. Note that the filtering and
detection schemes are applied to time-limited blocks of data
while the PLL works on a continuous sequence of samples.
In our experiments above the block-length is not adequate
to demonstrate the performance our CS-PLL, so we instead
generate an input signal of 25 dB input SNR with the same
parameters except only one FM signal present (and no TV
interference) of significantly longer duration and then apply
the CS-PLL. As Figure 6 indicates, the output of the CS-PLL
closely resembles the result of traditional FM demodulation,
even for the unduly pessimistic case of 25 dB input SNR
(instead of 40 dB).

IV. CONCLUSION

The results in this paper demonstrate that an effective
wideband radio receiver can be designed that simultaneously
collects and processes signals from the entire bandwidth of
interest. The undersampling nature of compressive sensing
dictates that noise and interference energy folds into the
various SOI bandwidths. However, by applying compressive-
domain interference cancellation and filtering techniques be-
fore reconstruction we can prevent interference folding. Thus

we increase the output SNR of a particular SOI, thereby
improving the utility of our system.

Signal classification was not directly addressed in this paper.
Some work with matched filters, both for 1-D and 2-D signals,
has appeared previously, but extending classification to the CS
domain for FM receivers remains a point of future work [5].

The detection scheme used in this receiver model was very
simple and likely not optimal. However, preliminary results
indicate that a more sophisticated detection scheme capable
of iteratively detecting and removing the largest signal can
dramatically improve performance of the system.

Iterative methods are also potentially valuable in other parts
of the system. For example, it may be useful to share infor-
mation among the PLLs for several signals. For example the
oscillator signal of one system may be useful in robustifying
another feedback loop. The assumption of a relatively sparse
spectrum particularly justifies sharing information among a
few parallel devices.
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