
CoSaMP with Redundant Dictionaries
Mark A. Davenport
School of Electrical

and Computer Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332

Deanna Needell
Department of Mathematics

and Computer Science
Claremont McKenna College

Claremont, CA 91711

Michael B. Wakin
Department of Electrical Engineering

and Computer Science
Colorado School of Mines

Golden, CO 80401

Abstract—In this paper we describe a variant of the
iterative reconstruction algorithm CoSaMP for the setting
where the signal is not sparse in an orthonormal basis but
in a truly redundant or overcomplete dictionary. We utilize
the D-RIP, a condition on the sensing matrix analogous to
the well-known restricted isometry property. In contrast to
prior work, the method and analysis are “signal-focused”;
that is, they are oriented around recovering the signal
rather than its dictionary coefficients. Under the assump-
tion that we have a near-optimal scheme for projecting
vectors in signal space onto the model family of candidate
sparse signals, we provide provable recovery guarantees.
We also provide a discussion of practical examples and
empirical results.

I. INTRODUCTION

Compressive sensing (CS) is a powerful new frame-
work for signal acquisition [1], offering the promise that
we can acquire a vector x ∈ Cn via only m� n linear
measurements provided that x is sparse or compress-
ible.1 Specifically, CS considers the problem where we
obtain measurements of the form y = Ax + e, where
A is an m × n sensing matrix and e is a noise vector.
If x is sparse or compressible and A satisfies certain
conditions, then CS provides a mechanism to efficiently
recover the signal x from the measurement vector y.

Typically, however, signals of practical interest are not
themselves sparse, but rather have a sparse expansion in
some dictionary D. By this we mean that there exists a
sparse coefficient vector α such that the signal x can
be expressed as x = Dα. One could then ask the
simple question: How can we account for this signal
model in CS? In some cases, there is a natural way
to extend the standard CS formulation—since we can
write the measurements as y = ADα + e we can use
standard CS techniques to first obtain an estimate α̂ of
the sparse coefficient vector. We can then synthesize an
estimate x̂ = Dα̂ of the original signal. Unfortunately,
this is a rather restrictive approach for two main reasons:

This work was partially supported by NSF grants DMS-1004718
and CCF-0830320, NSF CAREER grant CCF-1149225, and AFOSR
grant FA9550-09-1-0465.

1When we say that a vector z is k-sparse, we mean that ‖z‖0
def
=

|supp(z)| ≤ k � n. A compressible vector is one that is well-
approximated as being sparse.

(i) applying standard CS results to this problem will
require that the product AD satisfies certain properties,
such as the restricted isometry property (RIP), that will
not be satisfied for many interesting choices of D, and
(ii) we are not ultimately interested in recovering α per
se, but rather in obtaining an accurate estimate of x.
The distinction is that redundancy in D implies that, in
general, the representation of a vector x in the dictionary
is not unique—there may exist many possible coefficient
vectors α that can be used to synthesize x. Moreover,
the dictionary D may be poorly conditioned, and hence
the signal space recovery error ‖x− x̂‖2 could be
significantly smaller or larger than the coefficient space
recovery error ‖α− α̂‖2. Thus, it may be possible to
recover x in situations where recovering α is impossible,
and even if we could apply standard CS results to
ensure that our estimate of α is accurate, this would
not necessarily translate into a recovery guarantee for x.

All of these challenges essentially stem from the fact
that extending standard CS algorithms in an attempt to
recover α is a coefficient-focused recovery strategy. By
trying to go from the measurements y all the way back to
the coefficient vector α, we encounter all the problems
above due to the lack of orthogonality of the dictionary.
In contrast, in this paper we propose a signal-focused
recovery strategy for CS for which we can provide
guarantees on the recovery of x while making no direct
assumptions concerning our choice of D. Our algorithm
employs the model of sparsity in D but directly obtains
an estimate of the signal x, and we provide guarantees
on the quality of this estimate in signal space. Our
bounds require only that A satisfy the D-RIP [2]—a
less-restrictive condition than requiring AD to satisfy
the RIP. Our algorithm is a modification of CoSaMP [3],
and in cases where D is unitary, our “Signal-Space
CoSaMP” algorithm reduces to standard CoSaMP.

Our work most closely relates to Blumensath’s Pro-
jected Landweber Algorithm (PLA) [4], an extension
of Iterative Hard Thresholding (IHT) [5] that operates
in signal space and accounts for a union-of-subspaces
signal model. In several ways, our work is a parallel of
this one, except that we extend CoSaMP rather than IHT
to operate in signal space. Both works assume that A

satisfies the D-RIP, and implementing both algorithms
requires the ability to compute projections of vectors in
the signal space onto the model family. One difference,
however, is that our analysis allows for near-optimal
projections whereas the PLA analysis does not.

II. SIGNAL SPACE COSAMP

To describe our algorithm, originally proposed in [6],
we begin by establishing some notation. Suppose that
A ∈ Cm×n and D ∈ Cn×d are given and that we
observe measurements of the form y = Ax + e =
ADα + e. For an index set Λ ∈ {1, 2, . . . , d} (some-
times referred to as a support set), we let DΛ denote the
n × |Λ| submatrix of D corresponding to the columns
indexed by Λ, and we let R(DΛ) denote the column
span of DΛ. We also use PΛ : Cn → Cn to denote
the orthogonal projection operator onto R(DΛ) and
PΛ⊥ : Cn → Cn to denote the orthogonal projection
operator onto the orthogonal complement of R(DΛ).2

Next, recall that one of the key steps in the traditional
CoSaMP algorithm is to project a vector in signal space
onto the set of candidate sparse signals. In the traditional
setting (when D is an orthonormal basis), this step
can be performed by simple thresholding of the entries
of the coefficient vector. Our Signal Space version of
CoSaMP, described in Algorithm 1, involves replacing
thresholding with a more general projection of vectors
in the signal space onto the signal model. Specifically,
for a given vector z ∈ Cn and a given sparsity level k,
define

Λk(z) := arg min
Λ:|Λ|=k

‖z − PΛz‖2 .

The support Λk(z)—if we could compute it—could be
used to generate the best k-sparse approximation to z;
in particular, the nearest neighbor to z among all signals
that can be synthesized using k columns fromD is given
by PΛk(z)z. Unfortunately, computing Λk(z) may be
difficult in general. Therefore, we allow near-optimal
projections to be used in our algorithm. For a given
vector z ∈ Cn and a given sparsity level k, we assume a
method is available for producing an estimate of Λk(z),
denoted Sk(z), such that |Sk(z)| = k and that there
exist constants ε1, ε2 ≥ 0 such that∥∥PΛk(z)z − PSk(z)z

∥∥
2
≤ ε1

∥∥PΛk(z)z
∥∥

2
(1)

and∥∥PΛk(z)z − PSk(z)z
∥∥

2
≤ ε2

∥∥z − PΛk(z)z
∥∥

2
. (2)

Setting either ε1 or ε2 equal to 0 would lead to requiring
that PΛk(z)z = PSk(z)z exactly. Note that our metric
for judging the quality of an approximation to Λk(z)

2Note that PΛ⊥ does not represent the orthogonal projection oper-
ator onto R(D{1,2,...,d}\Λ).

Algorithm 1 Signal Space CoSaMP [6]
input: A, D, y, k, stopping criterion
initialize: x0 = 0, ` = 0, Γ = ∅
while not converged do

proxy: h = A∗(y −Ax`)
identify: Ω = S2k(h)
merge: T = Ω ∪ Γ
update: x̃ = arg minz∈R(DT) ‖y −Az‖2

Γ = Sk(x̃)
x`+1 = PΓx̃
` = `+ 1

end while
output: x̂ = x`

is entirely in terms of its impact in signal space. It
might well be the case that Sk(z) could satisfy (1)
and (2) while being substantially different (or even
disjoint) from Λk(z). It is important to note, however,
that computing an optimal or even near-optimal support
estimate satisfying (1) and (2) remains challenging in
general.

III. RECOVERY GUARANTEES

We now provide a simple guarantee on the perfor-
mance of our algorithm in the special case where x
is k-sparse and e = 0. For a more thorough analysis
of the general noisy/compressible setting, we refer the
reader to [6]. We will approach our analysis under the
assumption that the matrix A satisfies the D-RIP [2].
Specifically, we say that A satisfies the D-RIP of order
k if there exists a constant δk ∈ (0, 1) such that√

1− δk ≤
‖ADα‖2
‖Dα‖2

≤
√

1 + δk

holds for all α satisfying ‖α‖0 ≤ k. We note that for
any choice of D, if A is populated with independent
and identically distributed (i.i.d.) random entries from
a Gaussian or subgaussian distribution, then with high
probability, A will satisfy the D-RIP of order k as long
as m = O(k log(d/k)) [7, Corollary 3.1].

Supposing that A satisfies the D-RIP, then for signals
having a sparse representation in the dictionary D, we
have the following guarantee.

Theorem III.1. Suppose there exists a k-sparse co-
efficient vector α such that x = Dα, and suppose
that A satisfies the D-RIP of order 4k. If we observe
y = Ax, then the signal estimate x`+1 obtained after
`+ 1 iterations of Signal Space CoSaMP satisfies∥∥x− x`+1

∥∥
2
≤ C

∥∥x− x`∥∥
2
, (3)

where

C = ((2 + ε1)δ4k + ε1)(2 + ε2)

√
1 + δ4k
1− δ4k

.

2

Our proof of Theorem III.1 appears in the Appendix
and is a modification of the original CoSaMP proof [3].
Through various combinations of ε1, ε2, and δ4k, it is
possible to ensure that C < 1 and thus that the accuracy
of Signal Space CoSaMP improves at each iteration.
Taking ε1 = 1

10 , ε2 = 1, and δ4k = 0.029 as an example,
we obtain C ≤ 0.5. Applying the relation (3) recursively,
we can then conclude that∥∥x− x`∥∥

2
≤ 2−` ‖x‖2 . (4)

Thus, by taking a sufficient number of iterations `, the
right hand side of (4) can be made arbitrarily small. For
sparse signal recovery, this result is fully in line with
state-of-the-art bounds for traditional CS algorithms such
as CoSaMP [3], except that it can be applied in settings
where the dictionary D is not unitary.

IV. SIMULATIONS

The main challenge in implementing our algorithm is
in computing Sk(z). Although our theoretical analysis
can accommodate near-optimal support estimates Sk(z)
that satisfy (1) and (2), computing even near-optimal
supports can be a challenging task for many dictionaries
of practical interest. In this section, we present sim-
ulation results using practical (but heuristic) methods
for attempting to find near-optimal supports Sk(z). We
see that the resulting algorithms—even though they
are not quite covered by our theory—can nevertheless
outperform classical CS reconstruction techniques.

In our simulations, we let D be a 256 × 1024 over-
complete DFT dictionary. In this dictionary, neighboring
columns are highly coherent, while distant columns are
not. We then construct a length-d coefficient vector α
with k = 8 nonzero entries chosen as i.i.d. Gaussian
random variables. We set x = Dα, construct A with
i.i.d. Gaussian entries, and collect noiseless measure-
ments y = Ax. After reconstructing an estimate of x,
we declare this recovery to be perfect if the SNR of the
recovered signal estimate is above 100 dB. We consider
two scenarios: one in which the nonzeros of α are ran-
domly positioned but well-separated (with a minimum
spacing of 8 zeros in between any pair of nonzeros), and
one in which the nonzeros cluster together in a single,
randomly-positioned block. Because of the nature of the
columns in D, we see that many recovery algorithms
perform differently in these two scenarios. See [6] for
additional simulations and details.3

1) Well-separated coefficients: Figure 1(a) plots the
performance of six different recovery algorithms for
the scenario where the nonzero entries of α are well-
separated. Two of these algorithms are the traditional

3All of our simulations were performed via a MATLAB software
package that we have made available for download at http://users.ece.
gatech.edu/∼mdavenport/software.

OMP and CoSaMP algorithms from CS, each using the
combined dictionary AD to first recover α. We actually
see that OMP performs substantially better than CoSaMP
in this scenario, apparently because it can select one
coefficient at a time and is less affected by the coherence
of D. It is somewhat remarkable that OMP succeeds at
all, given that AD will not satisfy the RIP and we are
not aware of any existing theory that would guarantee
the performance of OMP in this scenario.

We also show in Figure 1(a) two variants of Signal
Space CoSaMP: one in which OMP is used for com-
puting Sk(z) (labeled “SSCoSaMP (OMP)”), and one
in which CoSaMP is used for computing Sk(z) (labeled
“SSCoSaMP (CoSaMP)”). That is, these algorithms ac-
tually use OMP or CoSaMP as an inner loop inside
of Signal Space CoSaMP to find a sparse solution to
the equation z = Dα. In this scenario, we see that
the performance of SSCoSaMP (OMP) is substantially
better than OMP, while the performance of SSCoSaMP
(CoSaMP) is poor. We believe that this happens for the
same reason that traditional OMP outperforms traditional
CoSaMP. In general, we have found that when OMP
performs well, SSCoSaMP (OMP) may perform even
better, and when CoSaMP performs poorly, SSCoSaMP
(CoSaMP) may still perform poorly.

Figure 1(a) also shows the performance of two algo-
rithms that involve convex optimization for sparse reg-
ularization. One, labeled “`1,” uses `1-minimization [8]
to find a sparse vector α′ subject to the constraint that
y = ADα′. This algorithm outperforms traditional
OMP in this scenario. The other, labeled “SSCoSaMP
(`1),” is a variant of Signal Space CoSaMP in which `1-
minimization is used for computing Sk(z).4 Specifically,
to compute Sk(z), we find the vector α′ with the
smallest `1 norm subject to z = Dα′, and we then
choose the support that contains the k largest entries
of α′. Remarkably, this algorithm performs best of
all. We believe that this is due to the fact that, for
the overcomplete DFT dictionary, `1-minimization is
capable of finding Λk(z) exactly when z = PΛk(z)z and
the entries of Λk(z) are sufficiently well-separated [9].
While we do not guarantee that this condition will be met
within every iteration of Signal Space CoSaMP, the fact
that the original coefficient vector α has well-separated
coefficients seems to be intimately related to the success
of `1 and SSCoSaMP (`1) here.

2) Clustered coefficients: Finally, Figure 1(b) plots
the performance of the same six recovery algorithms for
the scenario where the nonzero entries of α are clustered
into a single block. Although one could of course employ
a block-sparse recovery algorithm in this scenario, our

4We are not unaware of the irony of using `1-minimization inside
of a greedy algorithm.

3

(a) (b)

Fig. 1. Performance in recovering signals having a k = 8 sparse representation in a 4× overcomplete DFT dictionary. Two
scenarios are shown: (a) one in which the k = 8 nonzero entries of α are randomly positioned but well-separated, and (b) one in
which the k = 8 nonzero entries all cluster together in a single, randomly-positioned block.

intent is more to study the impact that neighboring active
atoms have on the algorithms above.

In this scenario, between the traditional greedy al-
gorithms, CoSaMP now outperforms OMP, apparently
because it is designed to select multiple indices at each
step and will not be as affected by the coherence of
neighboring active columns in D. We also see that the
performance of SSCoSaMP (CoSaMP) is somewhat bet-
ter than CoSaMP, while the performance of SSCoSaMP
(OMP) is poor. We believe that this happens for the same
reason that traditional CoSaMP outperforms traditional
OMP. In general, we have found that when CoSaMP
performs well, SSCoSaMP (CoSaMP) may perform even
better, and when OMP performs poorly, SSCoSaMP
(OMP) may still perform poorly.

In terms of our condition for perfect recovery (esti-
mating x to within an SNR of 100 dB or more), neither
of the algorithms that involve `1-minimization perform
well in this scenario. However, we do note that both `1
and SSCoSaMP (`1) do frequently recover an estimate
of x with an SNR of 50 dB or more, though still not
quite as frequently as SSCoSaMP (CoSaMP) does.

APPENDIX

The proof of Theorem III.1 requires four main lem-
mas, which are listed below and proved in Sections A–D.
In the lemmas below, v = x− x` denotes the recovery
error in signal space after ` iterations.

Lemma A.1.
∥∥x− x`+1

∥∥
2
≤ (2 + ε2) ‖x− x̃‖2 .

Lemma A.2. ‖x− x̃‖2 ≤
√

1+δ4k
1−δ4k ‖PT⊥x‖2 .

Lemma A.3. ‖PT⊥x‖2 ≤ ‖PΩ⊥v‖2 .

Lemma A.4. ‖PΩ⊥v‖2 ≤ ((2 + ε1)δ4k + ε1) ‖v‖2 .

Combining all four statements above, we have∥∥x− x`+1
∥∥

2
≤ (2 + ε2) ‖x− x̃‖2

≤ (2 + ε2)

√
1 + δ4k
1− δ4k

‖PT⊥x‖2

≤ (2 + ε2)

√
1 + δ4k
1− δ4k

‖PΩ⊥v‖2

≤ C ‖v‖2 = C
∥∥x− x`∥∥

2
.

This completes the proof of Theorem III.1.

A. Proof of Lemma A.1

Using the triangle inequality, we have∥∥x− x`+1
∥∥

2
≤ ‖x− x̃‖2 +

∥∥x̃− x`+1
∥∥

2
.

Recall that Γ = Sk(x̃) and x`+1 = PΓx̃. If we let
Γ∗ = Λk(x̃), then we can write∥∥x̃− x`+1

∥∥
2
≤ ‖x̃− PΓ∗ x̃‖2 + ‖PΓ∗ x̃− PΓx̃‖2
≤ ‖x̃− PΓ∗ x̃‖2 + ε2 ‖x̃− PΓ∗ x̃‖2 ,

where the first line follows from the triangle inequality,
and the second line uses (2). Combining this, we have∥∥x− x`+1

∥∥
2
≤ ‖x− x̃‖2 + (1 + ε2) ‖x̃− PΓ∗ x̃‖2
≤ ‖x− x̃‖2 + (1 + ε2) ‖x̃− x‖2
= (2 + ε2) ‖x− x̃‖2 ,

where the second line follows from the fact that PΓ∗ x̃
is the nearest neighbor to x̃ among all vectors having a
k-sparse representation in D.

B. Proof of Lemma A.2

To begin, we note that x − x̃ has a 4k-sparse repre-
sentation in D, thus, applying the D-RIP we have

‖x− x̃‖2 ≤
‖Ax−Ax̃‖2√

1− δ4k
.

By construction,

‖Ax−Ax̃‖2 ≤ ‖Ax−Az‖2

4

for any z ∈ R(DT), in particular for z = PTx. Thus,

‖x− x̃‖2 ≤
‖Ax−Ax̃‖2√

1− δ4k
≤
‖Ax−APTx‖2√

1− δ4k
. (5)

By applying the D-RIP we obtain

‖Ax−APTx‖2 ≤
√

1 + δ4k ‖x− PTx‖2
=
√

1 + δ4k ‖PT⊥x‖2 . (6)

Combining (5) and (6) establishes the lemma.

C. Proof of Lemma A.3

First note that by the definition of T , x` ∈ R(DT),
and hence PT⊥x` = 0. Thus we can write,

‖PT⊥x‖2 =
∥∥PT⊥(x− x`)

∥∥
2

= ‖PT⊥v‖2 .

Finally, since Ω ⊆ T , we have that

‖PT⊥v‖2 ≤ ‖PΩ⊥v‖2 .

D. Proof of Lemma A.4

In order to prove the final lemma, we require two
supplemental lemmas:

Lemma A.5 (Consequence ofD-RIP [6]). For any index
set B and any vector z ∈ Cn,

‖PBA∗APBz − PBz‖2 ≤ δ|B| ‖z‖2 .

Lemma A.6 (Nested projections). For any pair of index
sets A,B with A ⊂ B, PA = PAPB .

Now, to make the notation simpler, let ṽ = A∗Av
and note that Ω = S2k(ṽ). Let Ω∗ = Λ2k(ṽ) and set
R = S2k(v). Using this notation we have

‖PΩ⊥v‖2 = ‖v − PΩv‖2
≤ ‖v − PΩṽ‖2
≤ ‖v − PR∪Ω∗ ṽ‖2 + ‖PR∪Ω∗ ṽ − PΩ∗ ṽ‖2

+ ‖PΩ∗ ṽ − PΩṽ‖2 , (7)

where the second line follows from the fact that PΩv is
the nearest neighbor to v among all vectors in R(DΩ)
and the third line uses the triangle inequality.

Below, we provide a bound on the first term in (7).
To deal with the second term in (7), note that for any Π
which is a subset of R ∪ Ω∗, we can write

ṽ − PΠṽ = (ṽ − PR∪Ω∗ ṽ) + (PR∪Ω∗ ṽ − PΠṽ),

where ṽ − PR∪Ω∗ ṽ is orthogonal to R(DR∪Ω∗), and
PR∪Ω∗ ṽ − PΠṽ ∈ R(DR∪Ω∗). Thus we can write

‖ṽ − PΠṽ‖22 = ‖ṽ − PR∪Ω∗ ṽ‖22 + ‖PR∪Ω∗ ṽ − PΠṽ‖22 .

Recall that over all index sets Π with |Π| = 2k,
‖ṽ − PΠṽ‖2 is minimized by choosing Π = Ω∗. Thus,
over all Π which are subsets of R ∪ Ω∗ with |Π| = 2k,

‖PR∪Ω∗ ṽ − PΠṽ‖22 must be minimized by choosing
Π = Ω∗. In particular, we have the first inequality below:

‖PR∪Ω∗ ṽ − PΩ∗ ṽ‖2 ≤ ‖PR∪Ω∗ ṽ − PRṽ‖2
= ‖PR∪Ω∗ ṽ − PRPR∪Ω∗ ṽ‖2
≤ ‖PR∪Ω∗ ṽ − PRv‖2
= ‖(PR∪Ω∗ ṽ − v)‖2 . (8)

The second line above uses Lemma A.6, the third line
follows from the fact that PRPR∪Ω∗ ṽ must be the near-
est neighbor to PR∪Ω∗ ṽ among all vectors in R(DR),
and the fourth line uses the fact that PRv = v because
R = S2k(v) and both x and x` are k-sparse in D.

To deal with the third term in (7), note that

‖PΩ∗ ṽ − PΩṽ‖2 ≤ ε1 ‖PΩ∗ ṽ‖2
≤ ε1 ‖PΩ∗PR∪Ω∗ ṽ‖2
≤ ε1 (‖v‖2 + ‖PR∪Ω∗ ṽ − v‖2) . (9)

The first line above follows from the definition of Ω∗

and from (1), the second line uses Lemma A.6 and the
third line uses the triangle inequality.

Combining (7), (8), and (9) we see that

‖PΩ⊥v‖2 ≤ (2 + ε1) ‖PR∪Ω∗ ṽ − v‖2 + ε1 ‖v‖2 .

Since v ∈ R(DR), we have that v ∈ R(DR∪Ω∗), and
so

‖PR∪Ω∗ ṽ − v‖2 = ‖PR∪Ω∗A
∗APR∪Ω∗v − PR∪Ω∗v‖2

≤ δ4k ‖v‖2 ,

where we have used Lemma A.5 to get the inequality
above. Putting all of this together establishes the lemma.

REFERENCES

[1] M. Davenport, M. Duarte, Y. Eldar, and G. Kutyniok, “Introduction
to compressed sensing,” in Compressed Sensing: Theory and
Applications, Y. Eldar and G. Kutyniok, Eds. Cambridge, UK:
Cambridge University Press, 2012.

[2] E. Candès, Y. Eldar, D. Needell, and P. Randall, “Compressed
sensing with coherent and redundant dictionaries,” Appl. Comput.
Harmon. Anal., vol. 31, no. 1, pp. 59–73, 2011.

[3] D. Needell and J. Tropp, “CoSaMP: Iterative signal recovery
from incomplete and inaccurate samples,” Appl. Comput. Harmon.
Anal., vol. 26, no. 3, pp. 301–321, 2009.

[4] T. Blumensath, “Sampling and reconstructing signals from a union
of linear subspaces,” IEEE Trans. Inform. Theory, vol. 57, no. 7,
pp. 4660–4671, 2011.

[5] T. Blumensath and M. Davies, “Iterative hard thresholding for
compressive sensing,” Appl. Comput. Harmon. Anal., vol. 27,
no. 3, pp. 265–274, 2009.

[6] M. Davenport, D. Needell, and M. Wakin, “Signal Space CoSaMP
for sparse recovery with redundant dictionaries,” Arxiv preprint
arXiv:1208.0353, 2012.

[7] M. Davenport and M. Wakin, “Compressive sensing of analog sig-
nals using discrete prolate spheroidal sequences,” Appl. Comput.
Harmon. Anal., vol. 33, no. 3, pp. 438–472, 2012.

[8] E. van den Berg and M. Friedlander, “Probing the Pareto frontier
for basis pursuit solutions,” SIAM J. Sci. Comput., vol. 31, no. 2,
pp. 890–912, 2008.

[9] E. Candès and C. Fernandez-Granda, “Towards a mathematical
theory of super-resolution,” Arxiv preprint arXiv:1203.5871, 2012.

5

