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I. ADAPTIVE SENSING

We focus on the problem of estimating a vector x ∈ Cn from a
small number of noisy linear measurements of the form

yi = 〈ai,x〉+ zi, i = 1, . . . ,m (1)

where ‖ai‖2 = 1 and zi ∼ N (0, σ2). We will typically be interested
in the case where the vector x is sparse, meaning that it has only s
nonzeros with s� n. In such a case, one can obtain a significantly
more accurate estimate of x by adaptively selecting the ai based on
the previous measurements (compared to the standard nonadaptive
approach), provided that the signal-to-noise ratio (SNR) is sufficiently
large (e.g., see [1–3]). In particular, a typical nonadaptive algorithm
can produce an estimate x̂ satisfying

E‖x̂− x‖22 ≤ C
n logn

m
sσ2, (2)

where C > 1 is a constant. One can show that this is essentially
optimal (see [4] for further discussion and references). In contrast,
provided that σ2 is not too large relative to the nonzero entries of x, a
well-designed adaptive scheme, where the ai are chosen sequentially
as in [1], [2], will determine the support with high probability and
hence has the potential to achieve

E‖x̂− x‖22 ≤ C′
s

m
sσ2, (3)

which represents a substantial improvement when s� n.
Given the large potential for improvement over nonadaptive ap-

proaches, one would expect adaptive sensing schemes to be quite
attractive in practical applications. However, in most applications,
there are a number of constraints on what kinds of measurements can
actually be acquired. For example, in a number of settings, physical
hardware constraints dictate that Fourier coefficients are the only ob-
servable measurements. Thus, a natural question is whether adaptive
sensing techniques can still be efficiently deployed in scenarios where
the practitioner must respect these kinds of constraints. We prove
that for certain measurement ensembles, constrained adaptive sensing
offers little improvement over standard nonadaptive approaches, no
matter how large the SNR. On the other hand, we provide both
theoretical and empirical evidence that in other cases, adaptivity can
still result in substantial improvement even in the constrained setting.

II. LIMITATIONS OF CONSTRAINED SENSING

As a prototypical example of constrained sensing, we first con-
sider the setting where the ai must be selected from the Fourier
measurement ensemble, i.e., each ai is a row of the Discrete
Fourier Transform (DFT) matrix F ∈ Cn×n with entries given by
Fjk = 1√

n
exp(−2π

√
−1jk/n). In this constrained setting we show

the following lower bound.
Theorem 1: Suppose that x is s-sparse and that samples are

acquired via (1) using m vectors chosen from the rows of the DFT
matrix F. Then for any estimate x̂ obtained by any adaptive scheme,
we have

E‖x̂− x‖22 ≥
n

m
sσ2. (4)

This shows that even using an optimal choice of sensing vectors,
the recovery error is still proportional to n

m
sσ2, which falls far short

of the potential gains possible in the unconstrained setting shown
in (3). This result is intuitive given the incoherence of the DFT
and canonical bases. It is also possible to generalize this result to a
somewhat broader class of measurement ensembles. This is somewhat
reminiscent of existing results which show (in an unconstrained
setting) that for a certain range of worst-case SNRs, adaptive schemes
do not result in a substantial improvement in terms of estimation
accuracy [3], [5]. However, these arguments only apply for a narrow
range of SNRs, and if the SNR improves (by only a small constant
factor), there is a dramatic transition and adaptivity yields significant
improvements [1], [2]. In contrast, Theorem 1 applies no matter how
large the SNR, and so in a sense is far more pessimistic.

III. PRACTICAL POTENTIAL FOR CONSTRAINED SENSING

While Theorem 1 suggests that adaptivity can be of only lim-
ited benefit in certain constrained settings, it is important to note
that this result applies only to certain specific classes of measure-
ments/sparsifying bases (e.g., the case of DFT measurements of
canonically sparse bases). In other constrained settings it may still
be possible to realize significant performance gains via a carefully
implemented adaptive scheme. To illustrate this potential, we propose
practical algorithms for constrained adaptive sensing and show that
these methods exhibit promising performance in a different setting
where the signals are sparse in an alternative basis.

Our approach appeals to connections between our problem and
the theory of optimal experimental design [6]. In particular, we note
that if we knew the support of x in advance, then it is possible
to obtain an optimal, continuous “weighting” of the elements in
our measurement ensemble by solving a simple convex optimization
problem (which corresponds to the A-optimality criterion in experi-
mental design [6]). The challenge in applying this in practice is that
(i) the support of x is not known, we must estimate this from the
measurements, and (ii) an optimal “weighting” of the elements may
not be practically useful—we may ultimately be required to select an
integer number of (unweighted) measurements from our ensemble.
We propose techniques for addressing these obstacles and evaluate
these approaches in settings inspired by tomography, demonstrating
significant performance gains over nonadaptive approaches.

As an example, Fig. 1 shows the results of a representative
simulation in which DFT measurements are taken of signals which
are sparse in a wavelet basis, in particular, whose Haar wavelet
decomposition is sparsely supported on a tree. In the nonadaptive
case, all measurements are taken without knowledge of the support
according to variable density sampling (VDS) [7]. In the adaptive
case, half of the measurements are taken using VDS and are used to
estimate the support with `1 minimization. The other half are then
chosen to optimize recovery error on this support. For comparison,
the oracle adaptive error shows the performance when the support
is known and all measurements are optimized. We observe that
the adaptive algorithm significantly outperforms the nonadaptive
algorithm and is competitive with an oracle estimate.
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Fig. 1. Simulation results with Fourier measurements, Haar basis tree-sparse
signals, s = 10, n = 1024, σ = 0.01.
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