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ABSTRACT

While manifold structure is often exploited for dimensionality re-
duction or feature extraction, this structure is rarely used by clas-
sification algorithms. We present a class of algorithms that uti-
lize the low-dimensional manifold nature of signal ensembles and
result in improved classification performance. The algorithms
are built within theoretical frameworks that take into considera-
tion prior knowledge of geometric structure in both labeled and
unlabeled data points. Additionally, these frameworks can ex-
ploit recent results on random projections of smooth manifolds
to ensure computational feasibility on extremely high-dimensional
problems.

1. INTRODUCTION

In many classification problems, the fundamental assumption is
that distinct classes are well-separated in the feature space (often
represented by a subset of RN ). Thus, the goal is to construct
a hypersurface in RN that divides the feature space into distinct
sub-regions. Algorithms typically try to find a surface that is in
some sense “optimal”, for instance, one that minimizes the proba-
bility of classification error. However, there is a catch: often, this
approach fails to fully exploit the intricate geometric relationships
that may exist both among the training data as well as the unla-
beled samples.

In an attempt to address this shortcoming, one option is to
assume that the available data resides on a manifold M in the am-
bient space. This has been successfully exploited to improve the
accuracy of semi-supervised classification in [1]. Typically, the di-
mension K of the manifold is many orders of magnitude smaller
than the native dimension N of the data. While this assumption
is not universally applicable, it can been rigorously shown that
smooth manifolds are good models for a variety of naturally oc-
curring signal classes. Of particular interest to us are image ap-
pearance manifolds (IAMs), which in many cases can be shown
to be isometric to Euclidean space [2]; . A simple example is the
set of all images generated by translating a simple object in a 2D
plane.

While manifold-related algorithms have generated consider-
able attention in the machine learning literature, most of them do
not address practical issues encountered in classification problems,
such as the presence or absence of noise, the possibility of having
insufficient training data, and the extent of topological knowledge
about the different signal classes. To address these issues, we re-
quire algorithms which are based on a strong theoretical founda-
tion, and which are particularly tailored to take into account the
intrinsic structure of both the available training data as well as the
incoming unlabeled examples.

2. TOPOLOGY-AWARE CLASSIFICATION

We now describe a succession of manifold-based classification
algorithms that can help enhance performance in the following
senses:

1. The manifold assumption leads to lower probability of er-
ror, i.e., better classification rates.

2. The manifold model helps increase the speed of the clas-
sification process; this is particularly relevant in high-
dimensional problems.

Generalized Maximum Likelihood Classification (GMLC)
A manifold-based framework for performing optimal classifica-
tion (in the maximum likelihood sense) is developed in [3]. In
this setting, we wish to classify an observed signal y ∈ RN into
one of P possible classes. We assume that y = x + ω, where ω
is an N -dimensional noise vector corrupting the “true” signal x.
We then model each class by a K-dimensional manifold Mi, i.e.,
x = fi(θi) for some i = 1, . . . , P , where θi is a K-dimensional
parameter vector. Let Hi be the hypothesis that the image x is of
class Ci for some i = 1, . . . , P . The GMLC classifier is given by:

C(y) = arg max
i=1,...,P

p(y|θ̂i,Hi),

where p(y|θ̂i,Hi) denotes the probability distribution of y condi-
tioned on θi and Hi, and

θ̂i = arg max
θ

p(y|θ,Hi)

is the maximum likelihood estimate of the parameter vector θi un-
der hypothesisHi. Under a spherically symmetric noise model for
ω, this can be shown to be equivalent to a two step procedure where
we first find the closest point on each manifold to the observation
y, and then classify according to which manifold is closest.

It is worth noting that in the case where the manifold is pa-
rameterized by an unknown shift of a known signal and the noise
is spherically symmetric, the GMLC classifier is equivalent to the
classical matched filter classifier (used in digital communications).
Thus, the GMLC framework simply generalizes the matched filter
to a arbitrary signal manifolds.

Note also that under the assumption that our training data con-
sists of the union of sufficiently dense samplings of each of the
underlying classes, the GMLC classifier reduces to the familiar
nearest-neighbor (NN) labeling scheme. This is usually easy to
implement for moderate problem sizes. An important additional
benefit of this approach is as follows: suppose we possess explicit
generative models1 for our signal manifolds Mi, i = 1, . . . , P .

1Such models are frequently encountered in image rendering and com-
puter graphics applications.



Then, we may directly compute the signals for the maximum like-
lihood parameters θ̂i corresponding to eachMi, and pick the class
based on which signal is closest to our observation y.
Classification using multiscale manifold navigation
For higher-dimensional data or larger datasets, it can be compu-
tationally prohibitive to find the maximum likelihood parameter
estimates for each class since doing so will involve calculating the
distance between y and a large number of candidate signals be-
longing to each particular class. To speed up the classification,
the following alternative has been proposed [4]: the procedure for
obtaining the maximum likelihood estimate θ̂i is to minimize

D(θi) = ||y − fi(θi)||22.
by starting with an initial estimate of θi and iteratively computing
the maximum likelihood estimate using Newton’s method. Un-
fortunately, in many important cases the manifolds may not be
smooth. In particular, the IAMs induced by images that contain
sharp edges are nowhere differentiable [5]. In this event, instead
of directly trying to minimize D(θ), we minimize a sequence of
functions

Dn(θi) = ||Gny −Gnfi(θi)||22,
where G1, G2, . . . is a sequence of nested regularization kernels at
progressively finer scales as advocated in [5]. To handle the possi-
bility of local minima, we can repeat the minimization algorithms
with different initial estimates of θi.
Classification using nonlinear manifold learning
The algorithms described above rely on either a generative model
for the different classes or the presence of a sufficiently dense sam-
pling of the underlying manifolds. In the event that the sampling
is not very dense, it may happen that the nearest neighbor for any
given unlabeled point y among the available training data acciden-
tally belongs to a class different from its true class. At first glance,
this seems to be an insurmountable problem. However, if we real-
ize that there is also a manifold structure in the unlabeled samples,
we can exploit implicit geometric relationships between the train-
ing and test data points to improve our classification performance.

As a first step, suppose that the set of test (unlabeled) points Y
consists of samples exclusively drawn from one of the P classes.
For each i, append Y to the set of training points from class Mi

(which is of intrinsic dimension K). Perform a nonlinear mani-
fold learning operation (for instance, Isomap2 [6]) and project the
data into K-dimensional Euclidean space. The performance of
this nonlinear mapping is typically quantified in terms of a met-
ric that describes how well the lower-dimensional representation
“fits” the original data (in case of Isomap, this is known as the
residual variance). The class that yields the lowest value accord-
ing to our metric is declared as the class of the set of unlabeled
points.

This scheme can be used in classification of slowly-varying
video sequences, where it is known that all the unlabeled images
arise from sampling a single candidate manifold among several test
cases. Thus, this type of algorithm exploits topological structure
among both training and test examples.

In the case where Y consists of samples drawn from a num-
ber of different possible classes, we may proceed similarly, but
in a greedy fashion: we separately classify each sample and se-
quentially append the classified elements of Y to the set of labeled
points, thus increasing the overall size of our training dataset.

2Isomap can be proven to yield good learning performance for certain
types of image appearance manifolds [2].

3. RANDOM PROJECTIONS FOR
HIGH-DIMENSIONAL PROBLEMS

Most manifold-based methods involve performing a considerable
number of computations with the available training and test data;
this may prove prohibitively expensive if the dimension N of the
data is very large. Fortunately, new theory [3, 7, 8] examining
the method of random linear projections of the original data en-
ables the above classification algorithms to become computation-
ally feasible. The central theme of these papers is as follows: if
the original data is of dimension N , but lies on a K-dimensional
manifold, then if the data is projected into a random subspace of
dimension O(K log N), the classification performance for each of
the above algorithms remains virtually the same (this statement is
made quantitatively precise in the indicated references).

Thus, manifold models do not merely aid in improved clas-
sification performance; they also ensure stable embedding of the
available data under a small set of random projections and pave
the way for the development of feasible, possibly real-time classi-
fication algorithms.

4. OPEN QUESTIONS

The algorithms described above can be shown to lead to signifi-
cant gains in performance. However, there are several open prob-
lems. The precise effect of noise on manifold-based algorithms
has not been fully explored from a theoretical perspective. Addi-
tionally, the performance of classification algorithms can sharply
degrade under improper (e.g., non-uniform) sampling of the under-
lying manifolds. Also, the bounds obtained in some of the results
pertaining to the method of random projections are imprecise. Re-
search is underway to address these issues.
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