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Abstract—The emergence of low-cost sensing architectures for
diverse modalities has made it possible to deploy sensor networks
that capture a single event from a large number of vantage points
and using multiple modalities. In many scenarios, these networks
acquire large amounts of very high-dimensional data. For ex-
ample, even a relatively small network of cameras can generate
massive amounts of high-dimensional image and video data. One
way to cope with this data deluge is to exploit low-dimensional
data models. Manifold models provide a particularly powerful
theoretical and algorithmic framework for capturing the structure
of data governed by a small number of parameters, as is often the
case in a sensor network. However, these models do not typically
take into account dependencies among multiple sensors. We thus
propose a new joint manifold framework for data ensembles
that exploits such dependencies. We show that joint manifold
structure can lead to improved performance for a variety of signal
processing algorithms for applications including classification and
manifold learning. Additionally, recent results concerning random
projections of manifolds enable us to formulate a scalable and
universal dimensionality reduction scheme that efficiently fuses
the data from all sensors.

Index Terms—Camera networks, classification, data fusion,
manifold learning, random projections, sensor networks.

I. INTRODUCTION

T
HE emergence of low-cost sensing devices has made it

possible to deploy sensor networks that capture a single

event from a large number of vantage points and using multiple

modalities. This can lead to a veritable data deluge, fueling the

need for efficient algorithms for processing and efficient proto-

cols for transmitting the data generated by such networks. In

order to address these challenges, there is a clear need for a

theoretical framework for modeling the complex interdependen-

cies among signals acquired by these networks. This framework

should support the development of efficient algorithms that can

exploit this structure and efficient protocols that can cope with

the massive data volume.
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Consider, for example, a camera network consisting of

video acquisition devices each acquiring -pixel images of a

scene simultaneously. Ideally, all cameras would send their raw

recorded images to a central processing unit, which could then

holistically analyze all the data produced by the network. This

naïve approach would in general provide the best performance,

since it exploits complete access to all of the data. However,

the amount of raw data generated by a camera network, on the

order of , becomes untenably large even for fairly small

networks operating at moderate resolutions and frame rates. In

such settings, the amount of data can (and often does) over-

whelm network resources such as power and communication

bandwidth. While the naïve approach could easily be improved

by requiring each camera to first compress the images using a

compression algorithm such as JPEG or MPEG, this modifi-

cation still fails to exploit any interdependencies between the

cameras. Hence, the total power and bandwidth requirements

of the network will still grow linearly with .

Alternatively, exploiting the fact that in many cases the end

goal is to solve some kind of inference problem, each camera

could independently reach a decision or extract some relevant

features, and then relay the result to the central processing unit

which would then combine the results to provide the solution.

Unfortunately, this approach also has disadvantages. The cam-

eras must be “smart” in that they must possess some degree of

sophistication so that they can execute nonlinear inference tasks.

Such technology is expensive and can place severe demands on

the available power resources. Perhaps more importantly, the

total power and bandwidth requirement will still scale linearly

with .

In order to cope with such high-dimensional data, a common

strategy is to develop appropriate models for the acquired

images. A powerful model is the geometric notion of a low-di-

mensional manifold. Informally, manifold models arise in cases

where 1) a -dimensional parameter can be identified that

carries the relevant information about a signal and 2) the signal

changes as a continuous (typically nonlinear)

function of these parameters. Typical examples include a 1-D

signal translated by an unknown time delay (parameterized by

the translation variable), a recording of a speech signal (param-

eterized by the underlying phonemes spoken by the speaker),

and an image of a 3-D object at an unknown location captured

from an unknown viewing angle (parameterized by the three

spatial coordinates of the object as well as its roll, pitch, and

yaw). In these and many other cases, the geometry of the signal

class forms a nonlinear -dimensional manifold in

(1)

where is the -dimensional parameter space. In recent

years, researchers in image processing have become increas-

ingly interested in manifold models due to the observation
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that a collection of images obtained from different target lo-

cations/poses/illuminations and sensor viewpoints form such

a manifold [1]–[3]. As a result, manifold-based methods for

image processing have attracted considerable attention, partic-

ularly in the machine learning community, and can be applied

to such diverse applications as data visualization, classification,

estimation, detection, control, clustering, and learning [3]–[5].

Low-dimensional manifolds have also been proposed as ap-

proximate models for a number of nonparametric signal classes

such as images of human faces and handwritten digits [6]–[8].

In sensor networks, multiple observations of the same event

are often acquired simultaneously, resulting in the acquisition

of interdependent signals that share a common parameteriza-

tion. Specifically, a camera network might observe a single event

from a variety of vantage points, where the underlying event is

described by a set of common global parameters (such as the lo-

cation and orientation of an object of interest). Similarly, when

sensing a single phenomenon using multiple modalities, such

as video and audio, the underlying phenomenon may again be

described by a single parameterization that spans all modalities

(such as when analyzing a video and audio recording of a person

speaking, where both are parameterized by the phonemes being

spoken). In both examples, all of the acquired signals are func-

tions of the same set of parameters, i.e., we can write each signal

as where is the same for all .

Our contention in this paper is that we can obtain a simple

model that captures the correlation between the sensor observa-

tions by matching the parameter values for the different mani-

folds observed by the sensors. More precisely, we observe that

by simply concatenating points that are indexed by the same

parameter value from the different component manifolds, i.e.,

by forming , we obtain a new

manifold, which we dub the joint manifold, that encompasses all

of the component manifolds and shares the same parameteriza-

tion. This structure captures the interdependencies between the

signals in a straightforward manner. We can then apply the same

manifold-based processing techniques that have been proposed

for individual manifolds to the entire ensemble of component

manifolds.

In this paper we conduct a careful examination of the topo-

logical and geometrical properties of joint manifolds; in par-

ticular, we compare joint manifolds to their component mani-

folds to see how properties like geodesic distances, curvature,

branch separation, and condition number are affected. We then

observe that these properties lead to improved performance and

noise-tolerance for a variety of signal processing algorithms

when they exploit the joint manifold structure. As a key advan-

tage of our proposed model, we illustrate how the joint man-

ifold structure can be exploited via a simple and efficient data

fusion algorithm based upon random projections. For the case of

cameras jointly acquiring -pixel images of a common scene

characterized by parameters, we demonstrate that the total

power and communication bandwidth required by our scheme

is linear in the mainfold dimension and only logarithmic in

the number of cameras and the camera resolution . Recent

developments in the field of compressive sensing has made this

data acquisition model practical in many interesting applica-

tions [9]–[11].

Related prior work has studied manifold alignment, where the

goal is to discover maps between datasets that are governed by

the same underlying low-dimensional structure. Lafon et al. pro-

posedan algorithm to obtain a one-to-one matchingbetweendata

points from several manifold-modeled classes [12]. The algo-

rithm first applies dimensionality reduction using diffusion maps

to obtain data representations that encode the intrinsic geometry

oftheclass.Then,anaffinefunctionthatmatchesasetof landmark

points is computed and applied to the remainder of the datasets.

This concept was extended by Wang and Mahadevan, who ap-

plied Procrustes analysis on the dimensionality-reduced datasets

to obtain an alignment function between a pair of manifolds [13].

Since an alignment function is provided instead of a data point

matching, the mapping obtained is applicable for the entire man-

ifold rather than for the set of sampled points. In our setting, we

assume that either1) themanifoldalignment is implicitlypresent,

forexample,viasynchronizationbetweenthedifferentsensors,or

2) themanifoldshavebeenalignedusingoneof theseapproaches.

Ourmainfocusisananalysisofthebenefitsprovidedbyanalyzing

the joint manifold versus solving the task of interest separately

on each of the manifolds. For concreteness, but without loss of

generality, we couch our analysis in the language of camera net-

works, although much of our theory is sufficiently generic so as

to apply to a variety of other scenarios.

This paper is organized as follows. Section II introduces and

establishes some basic properties of joint manifolds. Section III

provides discussion of practical examples of joint manifolds in

the camera network setting and describes how to use random

projections to exploit the joint manifold structure in such a set-

ting. Sections IV and V then consider the application of joint

manifolds to the tasks of classification and manifold learning,

providing both a theoretical analysis as well as extensive simu-

lations. Section VI concludes with a brief discussion.

II. JOINT MANIFOLDS: THEORY

In this section, we develop a theoretical framework for en-

sembles of manifolds that are jointly parameterized by a small

number of common degrees of freedom. Informally, we propose

a data structure for jointly modeling such ensembles; this is ob-

tained simply by concatenating points from different ensembles

that are indexed by the same articulation parameter to obtain a

single point in a higher-dimensional space.

We begin by defining the joint manifold for the setting of gen-

eral topological manifolds.1 In order to simplify our notation, we

will let denote the product mani-

fold. Furthermore, we will use the notation

to denote a -tuple of points, or concatenation of points,

which lies in the Cartesian product of sets (e.g., ).

Definition 1: Let be an ensemble of topological

manifolds of equal dimension . Suppose that the manifolds

are homeomorphic to each other, in which case there exists a

homeomorphism between and for each . For a

particular set of , we define the joint manifold as

1We refer the reader to [14] for a comprehensive introduction to manifolds.



2582 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 10, OCTOBER 2010

Fig. 1. Pair of isomorphic manifolds and , and the resulting joint man-
ifold .

Furthermore, we say that are the corresponding com-

ponent manifolds.

Note that serves as a common parameter space for all

the component manifolds. Since the component manifolds are

homeomorphic, this choice is ultimately arbitrary. In practice it

may be more natural to think of each component manifold as

being homeomorphic to some fixed -dimensional parameter

space . However, in this case one could still define as

is shown previously by defining as the composition of the

homeomorphic mappings from to and from to .

As an example, consider the 1-D manifolds in Fig. 1. Fig. 1(a)

and (b) shows two isomorphic manifolds, where

is an open interval, and

where , i.e.,

is a circle with one point removed (so that it remains iso-

morphic to a line segment). In this case the joint manifold

, illustrated in

Fig. 1(c), is a helix. Notice that there exist other possible

homeomorphic mappings from to , and that the precise

structure of the joint manifold as a submanifold of is heavily

dependent upon the choice of this mapping.

Returning to the definition of , observe that although we

have called the joint manifold, we have not shown that it ac-

tually forms a topological manifold. To prove that is indeed

a manifold, we will make use of the fact that the joint manifold

is a subset of the product manifold . One can show that

forms a -dimensional manifold using the product topology

[14]. By comparison, we now show that has dimension only

.

Proposition 1: is a -dimensional submanifold of .

Proof: We first observe that since , we automati-

cally have that is a second countable Hausdorff topological

space. Thus, all that remains is to show that is locally home-

omorphic to . Suppose . Since , we have

a pair such that is an open set containing

and is a homeomorphism where is an open

set in . We now define for and

. Note that for each , is an open

set and is a homeomorphism (since is a homeomorphism).

Now set and define .

Observe that is an open set and that . Furthermore, for

any in , we have that . Then

for each . Thus, since the image of each

in under their corresponding is the same, we

can form a single homeomorphism by assigning

. This shows that is locally homeomorphic

to as desired.

Since is a submanifold of , it also inherits some desir-

able properties from .

Proposition 2: Suppose that are isomorphic topo-

logical manifolds and is as previously defined.

1) If are Riemannian, then is Riemannian.

2) If are compact, then is compact.

Proof: The proofs of these facts are straightforward and

follow from the fact that if the component manifolds are Rie-

mannian or compact, then will be as well. then inherits

these properties as a submanifold of [14].

Up to this point we have considered general topological man-

ifolds. In particular, we have not assumed that the component

manifolds are embedded in any particular space. If each com-

ponent manifold is embedded in , the joint manifold is

naturally embedded in where . Hence, the

joint manifold can be viewed as a model for sets of data with

varying ambient dimension linked by a common parametriza-

tion. In the sequel, we assume that each manifold is em-

bedded in , which implies that . Observe that

while the intrinsic dimension of the joint manifold remains con-

stant at , the ambient dimension increases by a factor of .

We now examine how a number of geometric properties of the

joint manifold compare to those of the component manifolds.

We begin by observing that Euclidean distances2 between points

on the joint manifold are larger than distances on the component

manifolds. The result follows directly from the definition of the

Euclidean norm, so we omit the proof.

Proposition 3: Let be given. Then

While Euclidean distances are important (especially when

noise is introduced), the natural measure of distance between

a pair of points on a Riemannian manifold is not Euclidean dis-

tance, but rather the geodesic distance. The geodesic distance

between points is defined as

(2)

where is a -smooth curve joining and ,

and is the length of as measured by

(3)

In order to see how geodesic distances on compare to

geodesic distances on the component manifolds, we will make

use of the following lemma.

Lemma 1: Suppose that are Riemannian mani-

folds, and let be a -smooth curve on the

joint manifold. Denote by the restriction of to the ambient

2In the remainder of this paper, whenever we use the notation ! " ! we mean
! " ! , i.e., the  (Euclidean) norm on . When we wish to differentiate this
from other  norms, we will be explicit.
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dimensions corresponding to . Then each

is a -smooth curve on , and

Proof: We begin by observing that

(4)

For a fixed , let , and observe that

is a vector in . Thus we may apply the

standard norm inequalities

(5)

to obtain

(6)

Combining the right-hand side of (6) with (4) we obtain

Similarly, from the left-hand side of (6) we obtain

We are now in a position to compare geodesic distances on

to those on the component manifold.

Theorem 1: Suppose that are Riemannian mani-

folds. Let be given. Then

(7)

If the mappings are isometries, i.e.,

for any and for any

pair of points , then

(8)

Proof: If is a geodesic path between and , then from

Lemma 1

By definition . Hence, this establishes (7).

Now observe that lower bound in Lemma 1 is derived from

the lower inequality of (5). This inequality is attained with

equality if and only if each term in the sum is equal, i.e.,

for all and . This is precisely the case when

are isometries. Thus we obtain

We now conclude that since if we could

obtain a shorter path from to this would contradict the

assumption that is a geodesic on , which establishes (8).

Next, we study local smoothness and global self avoidance

properties of the joint manifold.

Definition 2. [15]: Let be a Riemannian submanifold of

. The condition number is defined as , where is the

largest number satisfying the following: the open normal bundle

about of radius is embedded in for all .

The condition number controls both local smoothness

properties and global properties of the manifold; as be-

comes smaller, the manifold becomes smoother and more

self-avoiding, as observed in [15]. We will informally refer to

manifolds with small as “good” manifolds.

Lemma 2. [15]: Suppose has condition number . Let

be two distinct points on , and let denote a

unit speed parameterization of the geodesic path joining and

. Then

Lemma 3. [15]: Suppose has condition number . Let

be two points on such that . If ,

then the geodesic distance is bounded by

We wish to show that if the component manifolds are smooth

and self avoiding, the joint manifold is as well. It is not easy to

prove this in the most general case, where the only assumption

is that there exists a homeomorphism (i.e., a continuous bijec-

tive map ) between every pair of manifolds. However, suppose

the manifolds are diffeomorphic, i.e., there exists a continuous

bijective map between tangent spaces at corresponding points

on every pair of manifolds. In that case, we make the following

assertion.

Theorem 2: Suppose that are Riemannian subman-

ifolds of , and let denote the condition number of .

Suppose also that the that define the corresponding
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joint manifold are diffeomorphisms. If is the condi-

tion number of , then

Proof: Let . Since the are diffeomor-

phisms, we may view as being diffeomorphic to ; i.e.,

we can build a diffeomorphic map from to as

We also know that given any two manifolds linked by a dif-

feomorphism , each vector in the tangent

space of the manifold at the point is uniquely

mapped to a tangent vector in the tangent space

of the manifold at the point through the

map , where denotes the Jacobian operator.

Consider the application of this property to the diffeomorphic

manifolds and . In this case, the tangent vector

to the manifold can be uniquely identified with a

tangent vector to the manifold . This

mapping is expressed as

since the Jacobian operates componentwise. Therefore, the tan-

gent vector can be written as

In other words, a tangent vector to the joint manifold can be de-

composed into component vectors, each of which are tangent

to the corresponding component manifolds.

Using this fact, we now show that a vector that is normal

to can also be broken down into subvectors that are normal

to the component manifolds. Consider , and denote

as the normal space at . Suppose . De-

compose each as a projection onto the component tangent

and normal spaces, i.e., for

such that for each . Then , and

since is tangent to the joint manifold , we have

, and thus . But,

. Hence , i.e., each is normal to

.

Armed with this last fact, our goal now is to show that if

then the normal bundle of radius is embedded

in , or equivalently, for any , that

provided that . Indeed, suppose

. Since and for all

, we have that . Since we

have proved that are vectors in the normal bundle of

and their magnitudes are less than , then

by the definition of condition number. Thus and

the result follows.

This result states that in general, the most we can say is that

the condition number of the joint manifold is guaranteed to

Fig. 2. Point at which the normal bundle for the helix manifold from Fig. 1(c)
intersects itself. Note that the helix has been slightly rotated for clarity.

be less than that of the worst manifold. However, in practice

this is not likely to happen. As an example, Fig. 2 illustrates

the point at which the normal bundle intersects itself for the

case of the joint manifold from Fig. 1(c). In this case we obtain

. Note that the condition numbers for the

manifolds and generating are given by and

. Thus, while the condition number of thejoint manifold

is not as low as the best manifold, it is notably smaller than

that of the worst manifold. In general, even this example may be

somewhat pessimistic and it is possible that the joint manifold

may be better conditioned than even the best manifold.

III. JOINT MANIFOLDS: PRACTICE

As noted in the Introduction, a growing number of algorithms

exploit manifold models for tasks such as pattern classification,

estimation, detection, control, clustering, and learning [3]–[5].

Theperformanceof thesealgorithmsoftendependsupon thegeo-

metric properties of the manifold model, such as its condition

number or geodesic distances along its surface. The theory de-

veloped in Section II suggests that the joint manifold preserves or

improves such properties. In Sections IV and V, we consider two

illustrative applications and observe that when noise is added to

the underlying signals, it can be extremely beneficial to use algo-

rithms specifically designed to exploit the joint manifold struc-

ture. However, before we address these particular applications,

we must first address some key practical concerns.

A. Acceptable Deviations From Theory

While manifolds are a natural way to model the structure of

a set of images governed by a small number of parameters, the

results in Section II make a number of assumptions concerning

the structure of the component manifolds. In the most general

case, we assume that the component manifolds are homeomor-

phic to each other. This means that between any pair of com-

ponent manifolds there should exist a bijective mapping such

that both and are continuous. Such an assumption assures

that the joint manifold is indeed a topological manifold. Unfor-

tunately, this excludes some scenarios that can occur in practice.

For example this assumption might not hold in a camera net-

work featuring nonoverlapping fields of view. In such camera

networks, there are cases in which only some cameras are sensi-

tive to small changes in the parameter values. Strictly speaking,

our theory may not apply in these cases, since the joint “mani-

fold” as we have defined it is not necessarily even a topological

manifold. As a result, one might expect to see significant perfor-

mance degradation when exploiting techniques that heavily rely

on this joint manifold structure. We provide additional discus-

sion of this issue in Section V-B, but for now we simply note
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that in Sections IV and V we conduct extensive experiments

using both synthetic and real-world datasets and observe that,

in practice, joint manifold-based processing techniques still ex-

hibit significantly better performance than techniques that op-

erate on each component manifold separately. While nonover-

lapping fields of view do pose a challenge (especially in the con-

text of manifold learning), the fact that this results in nonhome-

omorphic manifolds seems to be more of a technical violation

of our theory than a practical one.

In the context of manifold learning, we must actually assume

that the component manifolds are isometric to each other. This is

certainly not the case in a camera network with nonoverlapping

fields of view. Even with the restriction of a common field of

view, this may seem an undue burden. In fact, this requirement

is fulfilled by manifolds that are isometric to the parameter space

that governs them—a class of manifolds that has been studied in

[2]. Many examples from this class correspond to simple image

articulations that occur in vision applications, including:

• articulations of radially symmetric images, which are pa-

rameterized by a 2-D offset;

• articulations of four-fold symmetric images with smooth

boundaries, such as discs, balls, etc.;

• pivoting of images containing smooth boundaries, which

are parameterized by the pivoting angle;

• articulations of discs over distinct nonoverlapping

regions, with , producing a -dimensional

manifold.

These examples can be extended to objects with piecewise

smooth boundaries as well as to video sequences of such

articulations. In Section V, we describe heuristics for dealing

with the problem of nonoverlapping fields of view and provide

a number of experiments that suggest that these heuristics can

overcome violations of the isometry assumption in practice.

In our theoretical results concerning condition number, we

assume that the component manifolds are smooth, but the man-

ifolds induced by the motion of an object where there are sharp

edges or occlusions are nowhere differentiable. This problem

can be addressed by applying a smoothing kernel to each cap-

tured image, inducing a smooth manifold [3]. More generally,

we note that if the cameras have moderate computational capa-

bilities, then it may be possible to perform simple preprocessing

tasks such as segmentation, background subtraction, and illu-

mination compensation that will make the manifold assumption

more rigorously supported in practice. This may be necessary

in scenarios such as those involving multiple objects or chal-

lenging imaging conditions.

B. Efficient Data Fusion via Joint Manifolds Using Linear

Projections

Observe that when the number and ambient dimension

of the manifolds become large, the ambient dimension of the

joint manifold— —may be so large that it becomes impos-

sible to perform any meaningful computations. Furthermore, it

might appear that in order to exploit the joint manifold struc-

ture, we must collect all the data at a central location, which we

earlier claimed was potentially impossible. In order to address

this problem, we must exploit the joint manifold structure to de-

velop a more efficient fusion scheme.

Specifically, given a network of cameras, let ,

denote the image acquired by camera , which is assumed to

belong in a manifold , and let denote the corresponding

point in the joint manifold . Rather than forming the vector

, one could potentially estimate a -dimensional parameter

vector via the nonlinear mapping of corresponding to

the manifold . By collecting the at a central location,

we would obtain a data representation of dimension .

For example, in [16] this technique is implemented using a

Laplace Beltrami embedding to extract the parameter values

for each camera. However, by simply concatenating each ,

this approach essentially ignores the joint manifold structure

present in the data, which is evident due to the fact that

in an ideal setting the same parameters will be obtained

from each of the cameras. Moreover, given noisy estimates

for , it is not obvious how to most effectively integrate

the to obtain a single joint -dimensional representation.

Finally, while this approach eliminates the dependence upon

, it still suffers from a linear dependence upon .

To address this challenge, we observe that if we had access to

the vector , then we could exploit the joint manifold structure

to map it to a parameter vector of length only rather than

. Unfortunately, this mapping will generally be nonlinear,

and each element of could potentially depend upon the entire

vector , preventing us from operating individually on each .

Thus, rather than directly extract the features, we will instead re-

strict our focus to linear dimensionality reduction methods that,

while acting on the concatenated data , can be implemented in

a distributed fashion.

Specifically, we will aim to compute a dimensionally reduced

representation of denoted , where is a standard

linear projection operator. Since the operator is linear, we

can take local projections of the images acquired by each

camera, and still calculate the global projections of in a

distributed fashion. Let each camera calculate , with

the matrices . Then, by defining the

matrix , the global projections

can be obtained by

Thus, the final measurement vector can be obtained by simply

adding independent projections of the images acquired by the

individual cameras. This gives rise to the compressive data

fusion protocol illustrated in Fig. 3. Suppose the individual

cameras are associated with the nodes of a binary tree of size

, where the edges represent communication links between

nodes. Let the root of the tree denote the final destination of

the fused data (the central processing unit). Then the fusion

process can be represented by the flow of data from the leaves

to the root, with a binary addition occurring at every parent

node. Recalling that the dimensionality of the data is and

the depth of the tree is , we observe that the

total communication bandwidth requirement is given by
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Fig. 3. Distributed data fusion using linear projections in a camera network.

, i.e., the communication burden grows

only logarithmically in .

The main challenge in designing such a scheme is the choice

of a suitable matrix . Given a specific joint manifold ,

there may be an optimal that preserves the Euclidean and

the geodesic structures of while ensuring that is com-

parable to the dimension of the joint manifold (and, hence,

much less than the ambient dimension ). Unfortunately, the

general problem of computing an optimal linear projection of

a manifold remains unsolved and, in our context, finding this

projection matrix would also require full knowledge of the ob-

jects to be classified as well as the position/orientation of each

camera in the network. Such information would typically not be

available within the network.

Fortunately, we can exploit recent results concerning random

projections to solve this problem without any prior knowledge

of the structure of the network or the objects to be captured.

Specifically, it has been shown that the essential structure of a

-dimensional manifold with condition number residing

in is approximately preserved under an orthogonal projec-

tion into a random subspace of dimension

[17]. This result has been leveraged in the design of effi-

cient algorithms for inference applications, such as classifica-

tion using multiscale navigation [18], intrinsic dimension es-

timation [19], and manifold learning [19]. In our context, this

result implies that if the joint manifold has bounded condition

number as given by Theorem 2, then we can project the joint

data into a random subspace of dimension that is only loga-

rithmic in and and still approximately preserve the man-

ifold structure. This is formalized in the following theorem,

which follows directly from [17].

Theorem 3: Let be a compact, smooth, Riemannian

joint manifold in a -dimensional space with condition

number . Let denote an orthogonal linear mapping

from into a random -dimensional subspace of . Let

. Then, with high probability, the

geodesic and Euclidean distances between any pair of points

on are preserved up to distortion under .

Thus, we obtain a faithful embedding of the manifold via

a representation of dimension only . This repre-

sents a massive improvement over the original -dimensional

representation, and for large values of it can be a significant

improvement over the -dimensional representation obtained

by performing separate (nonlinear) dimensionality reduction on

each component manifold.3

Recalling that the total communication bandwidth required

for our compressive data fusion scheme is , we ob-

tain that when using random projections the dependence of the

required bandwidth on is ; this offers a significant

improvement from previous data fusion methods that neces-

sarily require the communication bandwidth to scale linearly

with the number of cameras. Joint manifold fusion via linear

projections integrates the network transmission and data fusion

steps in a fashion similar to the protocols discussed in random-

ized gossiping [21] and compressive wireless sensing [22].

Joint manifold fusion via random projections, like compres-

sive sensing [9]–[11], is universal in that the projections do

not depend on the specific structure of the manifold. Thus, our

sensing techniques need not be replaced for these extensions;

only our underlying models (hypotheses) are updated. We have

not discussed complicating factors such as clutter, varying or un-

known backgrounds, etc. Promising progress in [23] suggests

that such difficulties can potentially be handled even after ac-

quiring the random projections. Furthermore, recent years have

also seen the development of devices capable of directly ac-

quiring arbitrary linear projections of the images [11], [24]. Our

fusion scheme can directly operate on the measurements pro-

vided by such devices.

IV. JOINT MANIFOLD CLASSIFICATION

We now examine the application of joint manifold-based

techniques to some common inference problems. In this section,

we will consider the problem of binary classification when

the two classes corresponds to different manifolds. As an

example, we will consider the scenario where a camera network

acquires images of an unknown vehicle, and we wish to classify

between two vehicle types. Since the location of the vehicle is

unknown, each class forms a distinct low-dimensional manifold

in the image space. The performance of a classifier in this

setting will depend partially on topological quantities of the

joint manifold described in Section II, which in particular

provide the basis for the random projection-based version of our

3Note that if we were interested in compressing only a fixed number of images
 , we could apply the Johnson-Lindenstrauss lemma [20] to obtain that !  

"!"#$ % would be sufficient to obtain the result in Theorem 3. However, the
value of ! required in Theorem 3 is independent of the number of images  ,
and therefore provides scalability to extremely large datasets.
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algorithms. However, the most significant factor determining

the performance of the joint manifold-based classifier is of a

slightly different flavor. Specifically, the probability of error is

determined by the distance between the manifolds. Thus, we

also provide additional theoretical analysis of how distances

between the joint manifolds compare to those between the

component manifolds.

A. Theory

The problem of manifold-based classification is defined as

follows: given manifolds and , suppose we observe a

signal where either or and is a

noise vector, and we wish to find a function

that attempts to determine which manifold “generated” .

This problem has been explored in the context of automatic

target recognition (ATR) using high-dimensional noisy data

arising from a single manifold [25], [26]; this body of work

adopts a fully Bayesian approach in deriving fundamental

bounds on the performance of certain types of classification

methods. A full analysis of our proposed framework for joint

manifolds using this approach is beyond the scope of this paper.

Instead, we consider a classification algorithm based upon the

generalized maximum likelihood framework described in [27].

The approach is to classify by computing the distance from the

observed signal to each manifold, and then classify based

upon which of these distances is smallest; i.e., our classifier is

(9)

where . We will measure the perfor-

mance of this algorithm by considering the probability of mis-

classifying a point from as belonging to , which we denote

.

To analyze this problem, we employ three common notions

of separation in metric spaces:

• The minimum separation distance between two manifolds

and , defined as

• The maximum separation distance between manifolds

and , defined as

• The Hausdorff distance from to , defined as

Note that while and

, in general . As one might

expect, is controlled by the separation distances. For ex-

ample, suppose that ; if the noise vector is bounded

and satisfies , then we have that

and, hence

Thus we are guaranteed that . There-

fore, and the classifier defined by (9)

satisfies . We can refine this result in two pos-

sible ways. A first possible refinement is to note that the

amount of noise that we can tolerate without making an

error depends upon . Specifically, for a given , pro-

vided that we still have that .

Thus, for a given we can tolerate noise bounded by

.

A second possible refinement is to ignore this dependence

on while extending our noise model to the case where

with nonzero probability. We can still

bound , since

(10)

Thus, we now provide lower bounds on these separation dis-

tances. The corresponding upper bounds are available in [28].

In the interest of space, the proof of this and subsequent theo-

rems are omitted and can be found in [28].

Theorem 4: Consider the joint manifolds and

. Then, the following bounds hold:

(11)

(12)

(13)

As an example, if we consider the case where the separation

distances are constant for all , then the joint minimum separa-

tion distance satisfies , and using

the upper bound for from [28], we obtain

In the case where , we observe that

can be considerably larger than .

This means that we can potentially tolerate much more noise

while ensuring . To see this, let denote a noise

vector and recall that we require to
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ensure that . Thus, if we require that

for all , then we have that

However, if we instead only require that , then we

only need , which can be a significantly

less stringent requirement.

The benefit of classification using the joint manifold is more

apparent when we extend our noise model to the case where

we allow with nonzero probability and

apply (10). To bound the probability in (10), we will make use

of the following adaptation of Hoeffding’s inequality [29].

Lemma 4: Suppose that is a random vector that

satisfies , for . Suppose also that

the are independent and identically distributed (i.i.d.) with

. Then if , we

have that for any

Note that this lemma holds for any distribution on the noise

that is bounded. For Gaussian noise it is possible to establish a

very similar result (differing only in the constant inside the ex-

ponent) by using standard tail bounds. Using this lemma we can

relax the assumption on so that we only require that it is finite,

and instead make the weaker assumption that

for a particular pair of manifolds , . This as-

sumption ensures that , so that we

cancombineLemma4with (10) toobtainaboundon .Note

that if this conditiondoesnothold, then this is averydifficult clas-

sification problem since the expected norm of the noise is large

enough to push us closer to the other manifold, in which case the

simple classifier given by (9) makes little sense.

We now illustrate how Lemma 4 can be be used to com-

pare error bounds between classification using a joint manifold

versus using a pair of component manifolds. The proof can be

found in [28].

Theorem 5: Suppose that we observe where

and is a random vector such that , for

, and that the are i.i.d. with

. Define

and

If

(14)

and we classify the observation according to (9) then

and

(15)

and

(16)

This result can be weakened slightly to obtain the following

corollary [28].

Corollary 1: Suppose that we observe where

and is a random vector such that , for

and that the are i.i.d. with

. If

(17)

and we classify according to (9), then (15) and (16) hold with

the same constants as in Theorem 5.

Corollary 1 shows that we can expect a classifier based upon

the joint manifold to outperform a classifier based the th

component manifold whenever the squared separation distance

for the th component manifolds is comparable to the average

squared separation distance among the remaining component

manifolds. Thus, we can expect the joint classifier to outper-

form most of the individual classifiers, but it is still possible

that some individual classifiers will do better. Of course, if one

knew in advance which classifiers were best, then one would

only use data from the best classifiers. We expect that more

typical situations include the case where the best classifier

changes over time or where the separation distances are nearly

equal for all component manifolds, in which case the condition

in (17) is true for all .

B. Experiments

In this section, we apply the random projection-based fusion

algorithm to perform binary classification. Suppose a number of

synthetic cameras, each with resolution , observe the motion

of a truck along a straight road.4 This forms a 1-D manifold in

the image space pertaining to each camera; the joint mani-

fold is also a 1-D manifold in . Suppose now that we wish

to classify between two types of trucks. Example images from

three camera views for the two classes are shown in Fig. 4. The

resolution of each image is pixels.

In our experiment, we convert the images to grayscale and sum

random projections for the three camera views. The

sample camera views suggest that some views make it easier

to distinguish between the classes than others. For instance, the

head-on view of the two trucks is very similar for most shift pa-

rameters, while the side view is more appropriate for discerning

between the two classes of trucks.

The probability of error, which in this case is given by

, for different manifold-based classifica-

tion approaches as a function of the signal-to-noise ratio (SNR)

is shown in Fig. 4. It is clear that the joint manifold approach

performs better than majority voting and is comparable in

performance to the best camera. While one might hope to

be able to do even better than the best camera, Theorem 5

suggests that in general this is only possible when no camera is

significantly better than the average camera. Moreover, in the

absence of prior information regarding how well each camera

truly performs, the best strategy for the central processor would

be to fuse the data from all cameras. Thus, joint manifold fusion

4Our synthetic images were generated using POVRAY (http://www.povray.

org), an open-source ray tracing software package.
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Fig. 4. Sample images of two different trucks from multiple camera views and probability of error versus SNR for individual cameras, the joint manifold, and
majority voting. The number of pixels in each camera image   !"#  $%#  &%'##. Joint manifold-based classification outperforms majority voting and
performs nearly as well as the best camera.

proves to be more effective than high-level fusion algorithms

like majority voting.

This example highlights two scenarios when our proposed

approach should prove useful. First, our method acts as a

simple scheme for data fusion in the case when most cameras

do not yield particularly reliable data (and thus decision fusion

algorithms like majority voting are ineffective.) Second, due

to the high dimensionality of the data, transmitting the images

could be expensive in terms of communication bandwidth. Our

method ensures that the communication cost is reduced to be

proportional only to the number of degrees of freedom of the

signal.

V. JOINT MANIFOLD LEARNING

In contrast to the classification scenario described previ-

ously, in which we knew the manifold structure a priori, we

now consider manifold learning algorithms that attempt to learn

the manifold structure from a set of samples of a manifold.

This is accomplished by constructing a (possibly nonlinear)

embedding of the data into a subset of , where . If

the dimension of the manifold is known, then is typically

set to . Such algorithms provide a powerful framework for

navigation, visualization and interpolation of high-dimensional

data. For instance, manifold learning can be employed in the

inference of articulation parameters (e.g., 3-D pose) from a set

of images of a moving object. In this section, we demonstrate

that in a variety of settings, the joint manifold is significantly

easier to learn than the individual component manifolds. This

improvement is due to both the kind of increased robustness to

noise noted in Section IV and to the fact that, as was shown in

Theorem 2, the joint manifold can be significantly better-con-

ditioned than the component manifolds, meaning that it is

easier to learn the structure of the joint manifold from a finite

sampling of points.

A. Theory

Several algorithms for manifold learning have been proposed,
each giving rise to a nonlinear map with its own special prop-
erties and advantages (e.g., Isomap [30], Locally Linear Em-
bedding (LLE) [31], Hessian Eigenmaps [32], etc.) Of these ap-
proaches, we devote special attention here to the Isomap algo-
rithm, which assumes that the point cloud consists of samples
from a data manifold that is (at least approximately) isometric
to a convex subset of Euclidean space. In this case, there exists
an isometric mapping from a parameter space to the
manifold such that for all

. In essence, Isomap attempts to discover the inverse
mapping .

Isomap works in three stages:
1) Construct a graph that contains a vertex for each data

point; an edge connects two vertices if the Euclidean dis-
tance between the corresponding data points is below a
specified threshold.

2) Weight each edge in the graph by computing the Eu-
clidean distance between the corresponding data points.
We then estimate the geodesic distance between each pair
of vertices as the length of the shortest path between the
corresponding vertices in the graph .

3) Embed the points in using multidimensional scaling
(MDS), which attempts to embed the points so that their
Euclidean distance approximates the estimated geodesic
distances.

A crucial component of the MDS algorithm is a suitable linear
transformation of the matrix of squared geodesic distances; the
rank- approximation of this new matrix yields the best pos-
sible -dimensional coordinate structure of the input sample
points in a mean-squared sense. Further results on the perfor-
mance of Isomap in terms of geometric properties of the under-
lying manifold can be found in [33].

We examine the performance of Isomap for learning the joint
manifold as compared to learning the isometric component
manifolds separately. We assume that we have noiseless sam-
ples from . In order to judge the quality of the em-
bedding learned by Isomap, we will observe that for any pair
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Fig. 5. (top) Articulation manifolds sharing a common 2-D parameter space  . Images simulate viewing a translating disc from  ! " viewing angles.
(bottom) 2-D embedding of individual and joint manifolds learned via Isomap.

of samples from a manifold whose vertices are linked
within the graph , we have that

(18)

for some that will depend upon the samples of and
the graph . Isomap will perform well if the largest value of
that satisfies (18) for any pair of samples that are connected by
an edge in the graph is close to 1. Using this fact, we can
compare the performance of manifold learning using Isomap
on samples from the joint manifold to using Isomap on
samples from a particular component manifold . The proof
of this theorem can again be found in [28].

Theorem 6: Let be a joint manifold from isometric
component manifolds. Let and suppose that we are
given a graph that contains one vertex for each sample ob-
tained from . For each , define as the largest
value such that

(19)

for all pairs of points connected by an edge in . Then we have
that

(20)

From Theorem 6 we see that, in many cases, the joint man-
ifold estimates of the geodesic distances will be more accurate
than the estimates obtained using one of the component mani-
folds. If for a particular component manifold we observe

that , then we know that the joint mani-

fold leads to better estimates. Essentially, we may expect that
the joint manifold will lead to estimates that are better than the
average case across the component manifolds.

We now consider the case where we have a dense sampling
of the manifolds so that the , and examine the case where

we obtain noisy samples. We will assume that the noise is i.i.d.
and demonstrate that any distance calculation performed on
serves as a better estimator of the pairwise (and consequently,
geodesic) distances between any two points and than that
performed on any component manifold using the points and

. Again, the proof of this theorem can be found in [28].
Theorem 7: Let be a joint manifold from isometric

component manifolds. Let and assume that

for all . Assume that we acquire noisy observations
and , where and are independent noise vectors
with , , and
for . Then

where .

We observe that the estimate of the true distance suffers from
a small constant bias; this can be handled using a simple de-
biasing step.5 Theorem 7 indicates that the probability of large
deviations in the estimated distance decreases exponentially in
the number of component manifolds ; thus we should observe
significant “denoising” even in the case where is relatively
small.

B. Practice

The theoretical results derived previously assume that the ac-

quired data arises from isometric component manifolds. As

noted in Section III-A, barring controlled or synthetic scenarios,

this is very rarely the case. In practice, the isometric assump-

tion breaks down due to two reasons: 1) the cameras may be

at different distances from the scene, nonidentical cameras may

possess different dynamic ranges, or the cameras may be of dif-

ferent modalities (such as visual versus infrared cameras or even

5Manifold learning algorithms such as Isomap deal with biased estimates of
distances by “centering” the matrix of squared distances, i.e., removing the mean
of each row/column from every element.
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Fig. 6. (top) Noisy captured images.  !"  # $ %&; (bottom) 2-D embeddings learned via Isomap from noisy images. The joint manifold structure helps
ameliorate the effects of noise.

visual plus audio data), and thus the component manifolds may

be scaled differently; 2) due to occlusions or partially-overlap-

ping fields of view, certain regions of some component mani-

folds may be ill-conditioned.

In order to handle such nonidealities, we make two modifica-

tions to the Isomap algorithm while performing joint manifold

learning. Recall that that in order to find the nearest-neighbor

graph , Isomap must first calculate the matrix of squared pair-

wise Euclidean distances. We denote this matrix for the joint

manifold and for the component manifold . Note

that . Thus, if a particular component manifold

is scaled differently than the others, by which we mean that

with , then all

the entries of the corresponding will be reweighted by ,

so that will have a disproportionate impact on . This corre-

sponds to the first nonideality described previously, and can be

alleviated by normalizing each by its Frobenius norm, which

can be interpreted as scaling each manifold so that an Eulerian

path through the complete graph has unit length.

The second nonideality can be partially addressed by at-

tempting to adaptively detect and correct for occlusion events.

Consider the case of large-scale occlusions, in which we make

the simplifying assumption that for each camera the object of

interest is either entirely within the camera’s view or entirely

occluded. In this case, the nonoccluded component manifolds

are still locally isometric to each other, i.e., there exists a

neighborhood such that

for all and for all corresponding to the nonoc-

cluded component manifolds. Thus, if we knew which cameras

were occluded for a pair of points, say and , then we

could simply ignore those cameras in computing and

rescale so that it is comparable with the case when no

cameras exhibit occlusions. More specifically, we let denote

the index set for nonoccluded component manifolds and set

. To do this automatically,

we compare to a specific threshold to zero when it

is below a certain value, i.e., we set

for some parameter , since for the component manifolds in

which the object of interest is occluded this distance will be rel-

atively small. The parameter can be reasonably inferred from

the data. is used by subsequent steps in Isomap to learn an

improved low-dimensional embedding of the high-dimensional

acquired data. Note that while this approach does not rigor-

ously handle boundary cases where objects are only partially

occluded, our experimental results, shown in the following,

indicate that the algorithms are robust to such cases.

C. Experiments

We provide a variety of results using both simulated and

real data that demonstrate the significant gains obtained by ex-

ploiting the joint manifold structure, both with and without the

use of random projections. The manifold learning results have

been generated using Isomap [30]. For ease of presentation,

all of our experiments are performed on 2-D image manifolds,

which are isomorphic, to a closed rectangular subset of .

Thus, ideally the 2-D embedding of the data should resemble a

rectangular grid of points that correspond to the samples of the

joint manifold in high dimensional space.

1) Manifolds Isometric to Euclidean Space: As a first ex-

ample, we consider three different manifolds formed by

pixel images of an ellipse with major axis and

minor axis translating in a 2-D plane, for

and ; an example point is shown in Fig. 5. The eccen-

tricity of the ellipse directly affects the condition number

of the image articulation manifold; in fact, it can be shown that

manifolds associated with more eccentric ellipses exhibit higher

values for the condition number. Consequently, we expect that it

is “harder” to learn such manifolds. Fig. 5 shows that this is in-

deed the case. We add a small amount of i.i.d. Gaussian noise to

each image and apply Isomap to both the individual datasets as

well as the concatenated dataset. We observe that the 2-D rect-

angular embedding is poorly learnt for each of the component

manifolds but improves visibly for the joint manifold.

2) Gaussian Noise in Realistic Images: We now demonstrate

how using joint manifolds can help ameliorate imaging artifacts

such as Gaussian noise in a more realistic setting. We test our



2592 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 10, OCTOBER 2010

Fig. 7. (top) Sample images of 2 koalas moving along individual 1-D paths, yielding a 2-D manifold; (middle) 2-D embeddings of the dataset learned via Isomap
from  !"#$$ pixel images; (bottom) 2-D embeddings of the dataset learned from  %&$$ random projections. Learning the joint manifold yields a much
improved 2-D embedding.

proposed joint manifold learning approach on a set of synthetic

truck images. The data comprises a set of 540 views of a truck

on a highway from 3 vantage points. Each image is of size

. The images are parametrized by the

2-D location of the truck on the road; thus, each of the image

data sets can be modeled by a 2-D manifold. Sample views are

shown in Fig. 4; for this experiment, we only use images from

Class 2. We convert the images to grayscale, so that the ambient

dimension of the data from each camera lies in . Next, we

add i.i.d. Gaussian noise to each image and attempt to learn the

2-D manifold. The noise level is quite high ,

as evidenced by the sample images in Fig. 6. It is visually clear

from the 2-D embedding results that the learning performance

improves markedly when the data is modeled using a joint man-

ifold, thus providing numerical evidence for Theorem 7.

3) Real Data Experiment—Learning With Occlusions: We

now test our methods on data from a camera network; the im-

ages are obtained from a network of four Unibrain

OEM Firewire board cameras. Each camera has resolution

. The data comprises dif-

ferent views of the independent motions of 2 toy koalas along

individual 1-D paths, yielding a 2-D combined parameter space.

This data suffers from real-world artifacts such as fluctuations in

illumination conditions and variations in the pose of the koalas;

further, the koalas occlude one another in certain views or are

absent from certain views depending upon the particular van-

tage point. Sample images and 2-D embedding results are dis-

played in Fig. 7. We observe that the best embedding is obtained

by using the modified version of Isomap for learning the joint

manifold. To test the effectiveness of the data fusion method de-

scribed in Section III-B, we compute random pro-

jections of each image and sum them to obtain a randomly pro-

jected version of the joint data and repeat the previously shown

experiment. The dimensionality of the projected data is only 3%

of the original data; yet, we see very little degradation in per-

formance, thus displaying the effectiveness of random projec-

tion-based fusion.

4) Real Data Experiment—Unsupervised Target Tracking:

As a practical application of manifold learning, we consider a

situation where we are given a set of training data consisting

of images of a target moving through a region along with a

set of test images of the target moving along a particular tra-

jectory. We do not explicitly incorporate any known informa-

tion regarding the locations of the cameras or the parameter

space describing the target’s motion. The training images com-

prise views of a coffee mug placed at different posi-

tions on an irregular rectangular grid. Example images from

each camera are shown in Fig. 8. For the test data, we trans-

late the coffee mug so that its 2-D path traces out the shape of

the letter “R.” We aim to recover this shape using both the test

and training data. To solve this problem, we attempt to learn a

2-D embedding of the joint manifold using the modified version

of Isomap detailed in Section V-B. The learned embedding for

each camera is shown in Fig. 8. As is visually evident, learning

the data using any one camera yields very poor results; how-

ever learning the joint manifold helps discern the 2-D structure

to a much better degree. In particular, the “R” trajectory in the

test data is correctly recovered only by learning the joint man-

ifold. Finally, we repeat the previously shown procedure using

random projections of each image, and fuse the data

by summing the measurement vectors. While the recovered tra-

jectory of the anomalous (test) data suffers some degradation in

visual quality, we observe comparable 2-D embedding results

for the individual and joint manifolds as with the original data

set. Since the dimensionality of the projected data is merely

6% that of the original data set, this would translate to signif-

icant savings in communication costs in a real-world camera

network.
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Fig. 8. (top) Sample images of the 2-D movement of a coffee mug; (middle) 2-D embeddings of the dataset learned via Isomap from   !"#$$ pixel
images; (bottom) 2-D embeddings of the dataset learned via Isomap from  %#$$ random projections. The black dotted line corresponds to an “R”-shaped
trajectory in physical space. Learning the joint manifold yields a much improved 2-D embedding of the training points, as well as the “R”-shaped trajectory.

VI. DISCUSSION

Joint manifolds naturally capture the structure present in the

data produced by camera networks. We have studied topolog-

ical and geometric properties of joint manifolds, and have pro-

vided some basic examples that illustrate how they can improve

the performance of common signal processing algorithms. We

have also introduced a simple framework for data fusion for

camera networks that employs independent random projections

of each image, which are then accumulated to obtain an accu-

rate low-dimensional representation of the joint manifold. Our

fusion scheme can be directly applied to the data acquired by

such devices. Furthermore, while we have focused primarily on

camera networks in this paper, our framework can be used for

the fusion of signals acquired by many generic sensor networks,

as well as multimodal and joint audio/video data.
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