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Abstract

The emergence of low-cost sensing architectures
for diverse modalities has made it possible to de-
ploy sensor networks that acquire large amounts of
very high-dimensional data. To cope with such a
data deluge, manifold models are often developed
that provide a powerful theoretical and algorithmic
framework for capturing the intrinsic structure of
data governed by a low-dimensional set of param-
eters.However, these models do not typically take
into account dependencies among multiple sen-
sors. We thus propose a newjoint manifoldframe-
work for data ensembles that exploits such depen-
dencies. We show that joint manifold structure can
lead to improved performance for manifold learn-
ing. Additionally, we leverage recent results con-
cerning random projections of manifolds to for-
mulate a universal, network-scalable dimensional-
ity reduction scheme that efficiently fuses the data
from all sensors.

Introduction
The emergence of low-cost sensing devices has made it
possible to deploy sensor networks that capture a sin-
gle event from a large number of vantage points and
using multiple modalities. This can lead to a veritable
data deluge, fueling the need for efficient algorithms for
processing and efficient protocols for transmitting the
data generated by such networks. In order to address
these challenges, there is a clear need for a theoretical
framework for modeling the complex interdependencies
among signals acquired by these networks. This frame-
work should support the development of efficient algo-
rithms that can exploit this structure and efficient proto-
cols that can cope with the massive data volume.

Consider, for example, a sensor network consisting of
J sensors simultaneously observing a common scene.
We will assume that the signal acquired by each sensor
is a length-N vector. Ideally, all sensors would send
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these raw signals to a central processing unit, which
could then holistically analyze all the data produced by
the network. This naı̈ve approach would in general pro-
vide the best performance, since it exploits complete ac-
cess to all of the data. However, the amount of raw data
generated by a sensor network, on the order ofJN , be-
comes untenably large even for fairly small networks
operating at moderate sampling rates.

Alternatively, exploiting the fact that in many cases
the end goal is to solve some kind of inference problem,
each sensor could independently reach a decision or ex-
tract some relevant features, and then relay the result
to the central processing unit which would then com-
bine the results to provide the solution. Unfortunately,
this approach also has disadvantages. The sensors must
be “smart” in that they must possess some degree of
sophistication so that they can execute nonlinear infer-
ence tasks. Such technology is expensive and can place
severe demands on the available power resources. Sec-
ond, the total power and bandwidth requirement scale
linearly with the number of sensorsJ .

In order to cope with such high-dimensional data, a
common strategy is to develop appropriate models for
the acquired signals. A powerful model is the geo-
metric notion of a low-dimensionalmanifold. Infor-
mally, manifold models arise in cases where(i) a K-
dimensional parameterθ can be identified that carries
the relevant information about a signal and(ii) the sig-
nalf(θ) ∈ R

N changes as a continuous (typically non-
linear) function of these parameters. Typical examples
include a one-dimensional (1-D) signal translated by an
unknown time delay (parameterized by the translation
variable) and an image of a 3-D object at an unknown
location captured from an unknown viewing angle (pa-
rameterized by the three spatial coordinates of the ob-
ject as well as its roll, pitch, and yaw). In these and
many other cases, the geometry of the signal class forms
a nonlinearK-dimensional manifold inRN ,

M = {f(θ) : θ ∈ Θ}, (1)

whereΘ is theK-dimensional parameter space. In re-
cent years, researchers in image processing have be-



come increasingly interested in manifold models due
to the observation that a collection of images obtained
from different target locations/poses/illuminations and
camera viewpoints form such a manifold [Lu1998,
Donoho and Grimes2005, Wakin et al.2005]. As a
result, manifold-based methods for image processing
have attracted considerable attention, particularly in the
machine learning community, and can be applied to di-
verse applications including data visualization, classi-
fication, estimation, detection, control, clustering, and
learning [Wakin et al.2005, Belkin and Niyogi2003,
Costa and Hero.2004].

In sensor networks, multiple observations of the same
event are often acquired simultaneously, resulting in the
acquisition of interdependent signals that share a com-
mon parameterization (such as the location and orienta-
tion of an object of interest). All of the acquired signals
are functions of the same set of parameters, i.e., we can
write each signal asfj(θ) whereθ ∈ Θ is the same
for all j. Our contention in this paper is that we can
obtain a simple model that captures the correlation be-
tween the sensor observations by matching the param-
eter values for the different manifolds observed by the
sensors. More precisely, we observe that by simply con-
catenating points that are indexed by the same param-
eter valueθ from the different component manifolds,
i.e., by formingf(θ) = [f1(θ), f2(θ), . . . , fJ(θ)], we
obtain a new manifold, which we dub thejoint mani-
fold, that encompasses all of the component manifolds
and shares the same parameterization. This structure
captures the interdependencies between the signals in a
straightforward manner. We can then apply the same
manifold-based processing techniques that have been
proposed for individual manifolds to the entire ensem-
ble of component manifolds.

As a key advantage of our proposed model, we il-
lustrate how the joint manifold structure can be ex-
ploited via a simple and efficient data fusion algorithm
based onrandom projections.For the case ofJ sen-
sors jointly acquiring length-N signals sharing a com-
monK-dimensional parameterization, we demonstrate
that the total power and communication bandwidth re-
quired by our scheme is linear in the manifold dimen-
sionK and onlylogarithmic in the number of sensors
J and the sensor resolutionN . Recent developments
in the field of compressive sensing has made this data
acquisition model practical in many interesting applica-
tions [Donoho2006,Candès2006].

Joint Manifolds: Theory
In this section we develop a theoretical framework for
ensembles of manifolds that arejointly parameterized
by a small number ofcommondegrees of freedom. In-
formally, we propose a data structure for jointly model-
ing such ensembles; this is obtained simply by concate-
nating points from different ensembles that are indexed
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Figure 1:A pair of isomorphic manifoldsM1 andM2, and
the resulting joint manifoldM∗.

by the same articulation parameter to obtain a single
point in a higher-dimensional space.

We begin by defining the joint manifold for the set-
ting of general topological manifolds. In order to sim-
plify our notation, we will letM = M1 ×M2× · · ·×
MJ denote theproduct manifold. Furthermore, we will
use the notationp = (p1, p2, . . . , pJ) to denote aJ-
tuple of points, or concatenation ofJ points, which lies
in the Cartesian product ofJ sets (e.g.,M).

Definition 1. Let {Mj}J
j=1 be an ensemble ofJ topo-

logical manifolds of equal dimensionK. Suppose that
the manifolds are homeomorphic to each other, in which
case there exists a homeomorphismψj betweenM1

andMj for eachj. For a particular set of{ψj}J
j=2,

we define thejoint manifold as

M∗ = {p ∈ M : pj = ψj(p1), 2 ≤ j ≤ J}.
Furthermore, we say that{Mj}J

j=1 are the corre-
spondingcomponent manifolds.

Note thatM1 serves as a commonparameter space
for all the component manifolds. Since the compo-
nent manifolds are homeomorphic to each other, this
choice is ultimately arbitrary. In practice it may be more
natural to think of each component manifold as being
homeomorphic to some fixedK-dimensional parame-
ter spaceΘ. However, in this case one could still define
M∗ as is done above by definingψj as the composi-
tion of the homeomorphic mappings fromM1 to Θ and
from Θ toMj .

As an example, consider the one-dimensional man-
ifolds in Fig. 1. Figures 1(a) and (b) show two iso-
morphic manifolds, whereM1 = (0, 2π) is an open
interval, andM2 = {ψ2(θ) : θ ∈ M1} where
ψ2(θ) = (cos(θ), sin(θ)), i.e.,M2 = S1\(1, 0) is a cir-
cle with one point removed (so that it remains isomor-
phic to a line segment). In this case the joint manifold
M∗ = {(θ, cos(θ), sin(θ)) : θ ∈ (0, 2π)}, illustrated in
Fig. 1(c), is a helix. Notice that there exist other possi-
ble homeomorphic mappings fromM1 toM2, and that
the precise structure of the joint manifold as a subman-
ifold of R

3 is heavily dependent on the choice of this
mapping.

Returning to the definition ofM∗, observe that al-
though we have calledM∗ the joint manifold, we have
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not shown that it actually forms a topological manifold.
To prove thatM∗ is indeed a manifold, we will make
use of the fact that the joint manifold is a subset of the
product manifoldM. One can show thatM forms
a JK-dimensional manifold using the product topol-
ogy [Boothby2003]. By comparison, we can show that
M∗ has dimension onlyK; see [Davenport et al.2010]
for a proof. SinceM∗ is a submanifold ofM, it also
inherits some desirable properties from{Mj}J

j=1.

Proposition 1. Suppose that{Mj}J
j=1 are isomorphic

topological manifolds andM∗ is defined as above. If
{Mj}J

j=1 are Riemannian, thenM∗ is Riemannian.

Up to this point we have considered general topolog-
ical manifolds. In particular, we havenot assumed that
the component manifolds are embedded in any particu-
lar space. If each component manifoldMj is embed-
ded inR

Nj , the joint manifold is naturally embedded in
R

N∗

whereN∗ =
∑J

j=1
Nj. Hence, the joint manifold

can be viewed as a model for sets of data withvarying
ambient dimensionlinked by a common parametriza-
tion. In the sequel, we assume that each manifoldMj

is embedded inRN , which implies thatM∗ ⊂ R
JN .

Observe that while the intrinsic dimension of the joint
manifold remains constant atK, the ambient dimension
increases by a factor ofJ .

We now examine how a number of geometric proper-
ties of the joint manifold compare to those of the com-
ponent manifolds. We begin with the following simple
observation that Euclidean distances1 between points on
the joint manifold are larger than distances on the com-
ponent manifolds. The result follows directly from the
definition of the Euclidean norm, so we omit the proof.

Proposition 2. Letp, q ∈ M∗ be given. Then

‖p − q‖ =

√√√√
J∑

j=1

‖pj − qj‖2.

While Euclidean distances are important (especially
when noise is introduced), the natural measure of dis-
tance between a pair of points on a Riemannian mani-
fold is not Euclidean distance, but rather thegeodesic
distance. The geodesic distance between pointsp, q ∈
M is defined as

dM(p, q) = inf
γ
{L(γ) : γ(0) = p, γ(1) = q}, (2)

whereγ : [0, 1] → M is aC1-smooth curve joiningp
andq, andL(γ) is the length ofγ as measured by

L(γ) =

∫ 1

0

‖γ̇(t)‖dt. (3)

1In the remainder of this paper, whenever we use the no-
tation‖ · ‖ we mean‖ · ‖ℓ2 , i.e., theℓ2 (Euclidean) norm on
R

N . When we wish to differentiate this from otherℓp norms,
we will be explicit.

We show geodesic distances onM∗ compare to
geodesic distances on the component manifolds via the
following theorem (proven in [Davenport et al.2010]).

Theorem 1. Suppose that{Mj}J
j=1 are Riemannian

manifolds. Letp, q ∈ M∗ be given. Then

dM∗(p, q) ≥ 1√
J

J∑

j=1

dMj
(pj , qj). (4)

If the mappingsψ2, ψ3, . . . , ψJ are isometries, i.e.,
dM1

(p1, q1) = dMj
(ψj(p1), ψj(q1)) for anyj and for

any pair of points(p, q), then

dM∗(p, q) =
1√
J

J∑

j=1

dMj
(pj , qj) =

√
J ·dM1

(p1, q1).

(5)

Next, we study local smoothness and global self
avoidance properties of the joint manifold.

Definition 2. [Niyogi, Smale, and Weinberger2004]
LetM be a Riemannian submanifold ofR

N . Thecon-
dition number is defined as1/τ , whereτ is the largest
number satisfying the following: the open normal bun-
dle aboutM of radius r is embedded inRN for all
r < τ .

The condition number controls both local smooth-
ness properties and global properties of the manifold; as
1/τ becomes smaller, the manifold becomes smoother
and more self-avoiding. We wish to show that if the
component manifolds are smooth and self avoiding, the
joint manifold is as well. It is not easy to prove this
in the most general case, where the only assumption
is that there exists a homeomorphism (i.e., a continu-
ous bijective mapψ) between every pair of manifolds.
However, suppose the manifolds arediffeomorphic, i.e.,
there exists a continuous bijective map between tangent
spaces at corresponding points on every pair of mani-
folds. In that case, we make the following assertion,
proven in [Davenport et al.2010].

Theorem 2. Suppose that{Mj}J
j=1 are Riemannian

submanifolds ofRN , and let1/τj denote the condition
number ofMj . Suppose also that the{ψj}J

j=2 that de-
fine the corresponding joint manifoldM∗ are diffeo-
morphisms. If1/τ∗ is the condition number ofM∗,
then

1

τ∗
≤ max

1≤j≤J

1

τj
.

This result states that for general manifolds, the most
we can say is that the condition number of the joint
manifold is guaranteed to be less than that of theworst
manifold. However, in practice this is not likely to hap-
pen. As an example, Fig. 2 illustrates the point at which
the normal bundle intersects itself for the case of the
joint manifold from Fig. 1(c). In this case we obtain
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Figure 2:Point at which the normal bundle for the helix man-
ifold from Fig. 1(c) intersects itself. Note that the helix has
been slightly rotated.

τ∗ =
√
π2/2 + 1 > 1. Note that the condition num-

bers for the manifoldsM1 andM2 generatingM∗ are
given byτ1 = ∞ andτ2 = 1. Thus, while the con-
dition number1/τ∗ of the joint manifold is not as low
as the best manifold, it is notably smaller than that of
the worst manifold. In general, even this example may
be somewhat pessimistic and it is possible that the joint
manifold may be better conditioned than even the best
manifold.

Joint Manifolds: Practice
The theory developed in the previous section suggests
that the joint manifold preserves or improves the geo-
metric properties of the component manifolds. In the
next section we show that it can be extremely benefi-
cial to use manifold learning algorithms specifically de-
signed to exploit the joint manifold structure. However,
we must first address some key practical concerns.

Acceptable deviations from theory
While manifolds are a natural way to model the struc-
ture of a set of signals governed by a small number of
parameters, the results in the previous section make a
number of assumptions concerning the structure of the
component manifolds. In the most general case, we as-
sume that the component manifolds are homeomorphic
to each other. Such an assumption assures that the joint
manifold is indeed a topological manifold.

Unfortunately, this excludes scenarios where a sen-
sor network features non-overlapping fields of view. In
such scenarios, there are cases in which only some sen-
sors are sensitive to small changes in the parameter val-
ues. Strictly speaking, our theory may not apply in these
cases, since the joint “manifold” as we have defined it
is not necessarily even a topological manifold. We pro-
vide additional discussion of this issue in the sequel.

In our theoretical results concerning condition num-
ber, we also assume that the component manifolds are
smooth. However, the image manifolds induced by
the motion of an object where there are sharp edges
or occlusions are nowhere differentiable. In a camera
network, this problem can be addressed by applying a
smoothing kernel to each captured image, inducing a
smooth manifold [Wakin et al.2005].

Efficient data fusion via joint manifolds using
linear projections
Observe that when the numberJ and ambient dimen-
sionN of the manifolds become large, the ambient di-
mension of the joint manifold—JN—may be so large
that it becomes impossible to perform any meaningful
computations. Furthermore, it might appear that in or-
der to exploit the joint manifold structure, we must col-
lect all the data at a central location, which we earlier
claimed was potentially impossible.

To address this challenge, we suppose that we are
given a network ofJ sensors, letxj ∈ R

N denote the
signal acquired by sensorj, which is assumed to belong
in a manifoldMj, and letx denote the corresponding
point in the joint manifoldM∗. Observe that if we
had access to the vectorx, then we could exploit the
joint manifold structure to map it to a parameter vector
θ̂ of length onlyK rather thanJK. Unfortunately, this
mapping will generally be nonlinear, and each element
of θ̂ could potentially depend on the entire vectorx,
preventing us from operating individually on eachxj .
Thus, rather than directly extract the features, we will
instead restrict our focus tolineardimensionality reduc-
tion methods that, while acting on the concatenated data
x, can be implemented in a distributed fashion.

Specifically, we will aim to compute a dimensionally
reduced representation ofx denotedy = Φx, where
Φ is a standard linear projection operator. Since the
operator is linear, we can takelocal projections of the
signals acquired by each sensor, and still calculate the
globalprojections ofx in a distributed fashion. Let each
sensor calculateyj = Φjxj , with the matricesΦj ∈
R

M×N , 1 ≤ j ≤ J . Then, by defining theM × JN
matrix Φ = [Φ1 Φ2 · · · ΦJ ], the global projections
y = Φx can be obtained by

y = Φx = [Φ1 Φ2 · · · ΦJ ][xT
1 xT

2 · · · xT
J ]T

= Φ1x1 + Φ2x2 + · · · + ΦJxJ .

Thus, the final measurement vector can be obtained by
simply adding independent projectionsof the signals
acquired by the individual sensors. This gives rise to
acompressive data fusionprotocol.

The main challenge in designing such a scheme is the
choice of a suitable matrixΦ for a specific joint mani-
fold M∗ that preserves its Euclidean and the geodesic
structures while ensuring thatM is comparable to the
dimensionK of the joint manifold (and hence much
less than the ambient dimensionJN ). Fortunately, we
can exploit recent results concerningrandom projec-
tions to solve this problem without any prior knowl-
edge of the structure of the network or the objects to
be captured. Specifically, it has been shown that the
essential structure of aK-dimensional manifold with
condition number1/τ residing inR

N is approximately
preserved under an orthogonal projection into a random
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subspace of dimensionO(K log(N/τ)) ≪ N [Bara-
niuk and Wakin2009]. Thus, we obtain a faithful em-
bedding of the joint manifold via a representation of di-
mension onlyO(K log JN).

Joint manifold fusion via random projections, like
compressive sensing [Donoho2006,Candès2006,Duarte
et al.2008], isuniversalin that the measurement process
is not dependent on the specific structure of the mani-
fold. Thus, our sensing techniques need not be replaced
for these extensions; only our underlying models (hy-
potheses) are updated.

Joint Manifold Learning
In this section we demonstrate that in a variety of set-
tings, the joint manifold is significantly easier to learn
than the individual component manifolds. This im-
provement is due to both the kind of increased robust-
ness to noise described earlier and to the fact that, as
was shown in Theorem 2, the joint manifold can be sig-
nificantly better-conditioned than the component mani-
folds, meaning that it is easier to learn the structure of
the joint manifold from a finite sampling of points.

Theory
Several algorithms for manifold learning have been pro-
posed, each giving rise to a nonlinear map with its own
special properties and advantages (e.g., Isomap [Tenen-
baum, Silva, and Landford2000], Locally Linear Em-
bedding (LLE) [Roweis and Saul2000], Hessian Eigen-
maps [Donoho and Grimes2003], etc.) Of these ap-
proaches, we devote special attention here to the Isomap
algorithm, which assumes that the point cloud consists
of samples from a data manifold that is (at least ap-
proximately) isometric to a convex subset of Euclidean
space.

Isomap works in three stages:

1. Construct a graphG that contains a vertex for each
data point; an edge connects two vertices if the
Euclidean distance between the corresponding data
points is below a specified threshold.

2. Weight each edge in the graphG by computing the
Euclidean distance between the corresponding data
points. We then estimate the geodesic distance be-
tween each pair of vertices as the length of the short-
est path between the corresponding vertices in the
graphG.

3. Embed the points inRK using multidimensional
scaling (MDS), which attempts to embed the points
so that their Euclidean distance approximates the es-
timated geodesic distances.

We examine the performance of Isomap for learning
the joint manifold as compared to learning theJ isomet-
ric component manifolds separately. We assume that
we have noiseless samples from{Mj}J

j=1. In order to

judge the quality of the embedding learned by Isomap,
we will observe that for any pair of samplesp, q from a
manifoldM whose vertices are linked within the graph
G, we have that

ρ ≤ ‖p− q‖
dM(p, q)

≤ 1 (6)

for someρ ∈ [0, 1] that will depend on the samples of
M and the graphG. Isomap will perform well if the
largest value ofρ that satisfies (6) for any pair of sam-
ples that are connected by an edge in the graphG is
close to1. Using this fact, we can compare the perfor-
mance of manifold learning using Isomap on samples
from the joint manifoldM∗ to using Isomap on samples
from a particular component manifoldMk. The proof
of this theorem can be found in [Davenport et al.2009].

Theorem 3. Let M∗ be a joint manifold fromJ iso-
metric component manifolds. Letp, q ∈ M∗ and sup-
pose that we are given a graphG that contains one
vertex for each sample obtained fromM∗. For each
k = 1, . . . , J , defineρj as the largest value such that

ρj ≤ ‖pj − qj‖
dMj

(pj , qj)
≤ 1 (7)

for all pairs of points connected by an edge inG. Then
we have that

1√
J

√√√√
J∑

j=1

ρ2
j ≤ ‖p − q‖

dM∗(p, q)
≤ 1. (8)

From Theorem 3 we see that, in many cases, the joint
manifold estimates of the geodesic distances will be
more accurate than the estimates obtained using one of
the component manifolds. If for a particular component

manifold Mk we observe thatρk ≤
√∑J

j=1
ρ2

j/J,

then we know that the joint manifold leads to better es-
timates. Essentially, we may expect that the joint mani-
fold will lead to estimates that are better than the aver-
age case across the component manifolds.

We now consider the case where we have a dense
sampling of the manifolds so that theρj ≈ 1, and ex-
amine the case where we obtain noisy samples. We will
assume that the noise is i.i.d. and demonstrate that any
distance calculation performed onM∗ serves as a better
estimator of the pairwise (and consequently, geodesic)
distances between any two pointsp andq than that per-
formed on any component manifold using the pointspj

andqj . Again, the proof of this theorem can be found
in [Davenport et al.2009].

Theorem 4. Let M∗ be a joint manifold fromJ iso-
metric component manifolds. Letp, q ∈ M∗ and as-
sume that‖pj − qj‖ = d for all j. Assume that we
acquire noisy observationss = p + n andr = q + n′,
where n and n′ are independent noise vectors with
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E[‖nj‖2] = E[‖n′
j‖2] = σ2, ‖nj‖2 ≤ ǫ, and‖n′

j‖2 ≤ ǫ
for j = 1, . . . , J . Then,

P

(
1 − δ ≤ ‖s − r‖2

‖p − q‖2 + 2Jσ2
≤ 1 + δ

)
≥ 1−2c−J2

,

wherec = exp

(
2δ2

(
d2

+2σ2

d
√

ǫ+ǫ

)2
)

.

We observe that the estimate of the true distance suf-
fers from a small constant bias; this can be handled us-
ing a simple debiasing step.2 Theorem 4 indicates that
the probability of large deviations in the estimated dis-
tance decreasesexponentiallyin the number of compo-
nent manifoldsJ ; thus we should observe significant
“denoising” even in the case whereJ is relatively small.

Practice
Our theoretical results assume that the acquired data
arises fromJ isometric component manifolds. As noted
earlier, barring controlled or synthetic scenarios, this
is very rarely the case. In practice, the isometric as-
sumption breaks down due to two reasons:(i) the sen-
sors may be at different distances from the scene, non-
identical sensors may possess different dynamic ranges,
or the sensors may be of different modalities (such as
visual versus infrared cameras or even visual plus au-
dio data), and thus the component manifolds may be
scaled differently;(ii) in a camera networks there may
be occlusions or partially-overlapping fields of view,
and certain regions of component manifolds may be ill-
conditioned.

In order to handle such non-idealities, we make two
modifications to the Isomap algorithm while perform-
ing joint manifold learning. Recall that that in order
to find the nearest-neighbor graphG, Isomap must first
calculate the matrix of squared pairwise Euclidean dis-
tances. We denote this matrixD for the joint manifold
M∗ andDj for the component manifoldMj. Note that
D =

∑J

j=1
Dj . Thus, if a particular component man-

ifold is scaled differently than the others, by which we
mean thatdMj

(fj(θ1), fj(θ2)) = Cj‖θ1 − θ2‖2 with
Cj 6= 1, then all the entries of the correspondingDj

will be reweighted byC2
j , so thatDj will have a dis-

proportionate impact onD. This corresponds to the first
non-ideality described above, and can be alleviated by
normalizingeachDj by its Frobenius norm, which can
be interpreted as scaling each manifold so that an Eule-
rian path through the complete graph has unit length.

The second non-ideality can be partially addressed
by attempting to adaptively detect and correct for occlu-
sion events. Consider the case of large-scale occlusions,

2Manifold learning algorithms such as Isomap deal with
biased estimates of distances by “centering” the matrix
of squared distances, i.e., removing the mean of each
row/column from every element.

in which we make the simplifying assumption that for
each camera the object of interest is either entirely
within the camera’s view or entirely occluded. In this
case, the non-occluded component manifolds are still
locally isometric to each other, i.e., there exists a neigh-
borhoodU such thatdMj

(fj(θ1), fj(θ2)) = ‖θ1−θ2‖2

for all θ1, θ2 ∈ U and for all j corresponding to the
non-occluded component manifolds. Thus, if we knew
which cameras were occluded for a pair of points, say
xm andxn, then we could simply ignore those cam-
eras in computingDm,n and rescaleDm,n so that it
is comparable with the case when no cameras exhibit
occlusions. More specifically, we let̃J denote the in-
dex set for non-occluded component manifolds and set
Dm,n = (|J |/|J̃ |)∑

j∈ eJ
‖xm

j − xn
j ‖2

2. To do this auto-

matically, we compare‖xm
j −xn

j ‖2
2 to a specified thresh-

old, i.e., we set̃J = {j : ‖xm
j −xn

j ‖2
2 ≥ ǫ} for some pa-

rameterǫ, since for the component manifolds in which
the object of interest is occluded this distance will be
relatively small. The parameterǫ can be reasonably in-
ferred from the data.D is used by subsequent steps in
Isomap to learn an improved low-dimensional embed-
ding of the high-dimensional acquired data. Note that
while this approach does not rigorously handle bound-
ary cases where objects are only partially occluded, our
experimental results below indicate that the algorithms
are robust to such cases. Such an approach could be
readily applied to other sensor networks which experi-
ence occlusion-like phenomena.

Experiments

We provide some results using data from a camera net-
work that demonstrate the significant gains obtained by
exploiting the joint manifold structure, both with and
without the use of random projections. The images
are obtained from a network of four Unibrain Fire-iTM

OEM Firewire board cameras. Each camera has reso-
lutionN = 320 × 240 = 76800 pixels. The manifold
learning results have been generated using Isomap. All
of our experiments are performed on 2-D image mani-
folds isomorphic to a closed rectangular subset ofR

2.

Learning with occlusions In this experiment we
study the impact of occlusions in a camera network.
The data comprisesJ = 4 different views of the in-
dependent motions of 2 toy koalas along individual 1-D
paths, yielding a 2-D combined parameter space. This
data suffers from real-world artifacts such as fluctua-
tions in illumination conditions and variations in the
pose of the koalas; further, the koalas occlude one an-
other in certain views or are absent from certain views
depending on the particular vantage point. Sample im-
ages and 2-D embedding results are displayed in Fig-
ure 3. We observe that the best embedding is obtained
by using the modified version of Isomap for learning the
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joint manifold. We computeM = 2400 random projec-
tions of each image and sum them to obtain a randomly
projected version of the joint data and repeat the above
experiment. The dimensionality of the projected data
is only 3% of the original data; yet, we see very little
degradation in performance, thus displaying the effec-
tiveness of random projection-based fusion.

Unsupervised target tracking As a practical appli-
cation of manifold learning, we consider a situation
where we are given a set of training data consisting of
images of a target moving through a region along with a
set of test images of the target moving along a particular
trajectory. We do not explicitly incorporate any known
information regarding the locations of the cameras or
the parameter space describing the target’s motion. The
training images compriseJ = 4 views of a coffee mug
placed at different positions on an irregular rectangular
grid. Example images from each camera are shown in
Figure 4. For the test data, we translate the coffee mug
so that its 2-D path traces out the shape of the letter
“R”. We aim to recover this shape using both the test
and training data. To solve this problem, we attempt
to learn a 2-D embedding of the joint manifold using
the modified version of Isomap detailed earlier. The
learned embedding for each camera is shown in Fig-
ure 4. As is visually evident, learning the data using
any one camera yields very poor results; however learn-
ing the joint manifold helps discern the 2-D structure to
a much better degree. In particular, the “R” trajectory
in the test data is correctly recovered only by learning
the joint manifold. Finally, we repeat the above pro-
cedure usingM = 4800 random projections of each
image, and fuse the data by summing the measurement
vectors. While the recovered trajectory of the anoma-
lous (test) data suffers some degradation in visual qual-
ity, we observe comparable 2-D embedding results for
the individual and joint manifolds as with the original
data set. Since the dimensionality of the projected data
is merely 6% that of the original data set, this would
translate to significant savings in communication costs
in a real-world camera network.

Discussion
Joint manifolds naturally capture the structure present
in the data produced by sensor networks. We have stud-
ied topological and geometric properties of joint mani-
folds, and have provided some basic examples that illus-
trate how they can improve the performance of common
signal processing algorithms. We have also introduced
a simple framework for data fusion for sensor networks
that employs independent random projections of each
signal, which are then accumulated to obtain an accu-
rate low-dimensional representation of the joint mani-
fold. Our fusion scheme can be directly applied to the
data acquired by such devices.
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Figure 3:(top) Sample images of 2 koalas moving along individual 1-D paths, yielding a 2-D manifold; (middle) 2-D embeddings
of the dataset learned via Isomap fromN = 76800 pixel images; (bottom) 2-D embeddings of the dataset learned fromM = 2400
random projections. Learning the joint manifold yields a much improved 2-D embedding.

Camera 1 Camera 2 Camera 3 Camera 4 Joint manifold

R
aw

im
ag

es
R

an
do

m
pr

oj
ec

tio
ns

Figure 4: (top) Sample images of the 2-D movement of a coffee mug; (middle) 2-D embeddings of the dataset learned via
Isomap fromN = 76800 pixel images; (bottom) 2-D embeddings of the dataset learned via Isomap fromM = 4800 random
projections. The black dotted line corresponds to an “R”-shaped trajectory in physical space. Learning the joint manifold yields a
much improved 2-D embedding of the training points, as well as the “R”-shaped trajectory.
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