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Abstract—The recently introduced theory of compressive
sensing enables the recovery of sparse or compressible signals
from a small set of nonadaptive, linear measurements. If properly
chosen, the number of measurements can be much smaller than
the number of Nyquist-rate samples. Interestingly, it has been
shown that random projections are a near-optimal measurement
scheme. This has inspired the design of hardware systems that
directly implement random measurement protocols. However, de-
spite the intense focus of the community on signal recovery, many
(if not most) signal processing problems do not require full signal
recovery. In this paper, we take some first steps in the direction
of solving inference problems—such as detection, classification, or
estimation—and filtering problems using only compressive mea-
surements and without ever reconstructing the signals involved.
We provide theoretical bounds along with experimental results.

Index Terms—Compressive sensing (CS), compressive signal
processing, estimation, filtering, pattern classification, random
projections, signal detection, universal measurements.

I. INTRODUCTION

A. From DSP to CSP

I N recent decades, the digital signal processing (DSP)
community has enjoyed enormous success in developing

algorithms for capturing and extracting information from sig-
nals. Capitalizing on the early work of Whitaker, Nyquist, and
Shannon on sampling and representation of continuous signals,
signal processing has moved from the analog to the digital
domain and ridden the wave of Moore’s law. Digitization has
enabled the creation of sensing and processing systems that are
more robust, flexible, cheaper and, therefore, more ubiquitous
than their analog counterparts.
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As a result of this success, the amount of data generated by
sensing systems has grown from a trickle to a torrent. We are
thus confronted with the following challenges:

1) acquiring signals at ever higher sampling rates;
2) storing the resulting large amounts of data;
3) processing/analyzing large amounts of data.

Until recently, the first challenge was largely ignored by the
signal processing community, with most advances being made
by hardware designers. Meanwhile, the signal processing com-
munity has made tremendous progress on the remaining two
challenges, largely via research in the fields of modeling, com-
pression, and dimensionality reduction. However, the solutions
to these problems typically rely on having a complete set of
digital samples. Only after the signal is acquired—presumably
using a sensor tailored to the signals of interest—could one dis-
till the necessary information ultimately required by the user or
the application. This requirement has placed a growing burden
on analog-to-digital converters [1]. As the required sampling
rate is pushed higher, these devices move inevitably toward a
physical barrier, beyond which their design becomes increas-
ingly difficult and costly [2].

Thus, in recent years, the signal processing community has
also begun to address the challenge of signal acquisition more
directly by leveraging its successes in addressing the second
two. In particular, compressive sensing (CS) has emerged as a
framework that can significantly reduce the acquisition cost at
a sensor. CS builds on the work of Candès, Romberg, and Tao
[3], and Donoho [4], who showed that a signal that can be com-
pressed using classical methods such as transform coding can
also be efficiently acquired via a small set of nonadaptive, linear,
and usually randomized measurements.

A fundamental difference between CS and classical sampling
is the manner in which the two frameworks deal with signal
recovery, i.e., the problem of recovering the signal from the
measurements. In the Shannon–Nyquist framework, signal re-
covery is achieved through sinc interpolation—a linear process
that requires little computation and has a simple interpretation.
In CS, however, signal recovery is achieved using nonlinear and
relatively expensive optimization-based or iterative algorithms
[3]–[5]. Thus, up to this point, most of the CS literature has
focused on improving the speed and accuracy of this process
[6]–[9].

However, signal recovery is not actually necessary in many
signal processing applications. Very often we are only interested
in solving an inference problem (extracting certain information
from measurements) or in filtering out information that is not of
interest before further processing. While one could always at-
tempt to recover the full signal from the compressive measure-
ments and then solve the inference or filtering problem using tra-
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ditional DSP techniques, this approach is typically suboptimal
in terms of both accuracy and efficiency.

This paper takes some initial steps towards a general frame-
work for what we call compressive signal processing (CSP), an
alternative approach in which signal processing problems are
solved directly in the compressive measurement domain without
first resorting to a full-scale signal reconstruction. In espousing
the potential of CSP we focus on four fundamental signal pro-
cessing problems: detection, classification, estimation, and fil-
tering. The first three enable the extraction of information from
the samples, while the last enables the removal of irrelevant in-
formation and separation of signals into distinct components.
While these choices do not exhaust the set of canonical signal
processing operations, we believe that they provide a strong ini-
tial foundation.

B. Relevance

In what settings is it actually beneficial to take randomized,
compressive measurements of a signal in order to solve an infer-
ence problem? One may argue that prior knowledge of the signal
to be acquired or of the inference task to be solved could lead to
a customized sensing protocol that very efficiently acquires the
relevant information. For example, suppose we wish to acquire
a length- signal that is -sparse (i.e., has nonzero coeffi-
cients) in a known transform basis. If we knew in advance which
elements were nonzero, then the most efficient and direct mea-
surement scheme would simply project the signal into the appro-
priate -dimensional subspace. As a second example, suppose
we wish to detect a known signal. If we knew in advance the
signal template, then the optimal and most efficient measure-
ment scheme would simply involve a receiving filter explicitly
matched to the candidate signal.

Clearly, in cases where strong a priori information is avail-
able, customized sensing protocols may be appropriate. How-
ever, a key objective of this paper is to illustrate the agnostic
and universal nature of random compressive measurements as a
compact signal representation. These features enable the design
of exceptionally efficient and flexible compressive sensing hard-
ware that can be used for the acquisition of a variety of signal
classes and applied to a variety of inference tasks.

As has been demonstrated in the CS literature, for example,
random measurements can be used to acquire any sparse signal
without requiring advance knowledge of the locations of the
nonzero coefficients. Thus, compressive measurements are ag-
nostic in the sense that they capture the relevant information for
the entire class of possible -sparse signals. We extend this con-
cept to the CSP framework and demonstrate that it is possible to
design agnostic measurement schemes that preserve the neces-
sary structure of large signal classes in a variety of signal pro-
cessing settings.

Furthermore, we observe that one can select a randomized
measurement scheme without any prior knowledge of the signal
class. For instance, in conventional CS it is not necessary to
know the transform basis in which the signal has a sparse rep-
resentation when acquiring the measurements. The only depen-
dence is between the complexity of the signal class (e.g., the
sparsity level of the signal) and the number of random measure-
ments that must be acquired. Thus, random compressive mea-

Fig. 1. Example CSP application: broadband signal monitoring.

surements are universal in the sense that if one designs a mea-
surement scheme at random, then with high probability it will
preserve the structure of the signal class of interest, and thus ex-
plicit a priori knowledge of the signal class is unnecessary. We
broaden this result and demonstrate that random measurements
can universally capture the information relevant for many CSP
applications without any prior knowledge of either the signal
class or the ultimate signal processing task. In such cases, the
requisite number of measurements scales efficiently with both
the complexity of the signal and the complexity of the task to be
performed.

It follows that, in contrast to the task-specific hardware used
in many classical acquisition systems, hardware designed to use
a compressive measurement protocol can be extremely flexible.
Returning to the binary detection scenario, for example, suppose
that the signal template is unknown at the time of acquisition, or
that one has a large number of candidate templates. Then what
information should be collected at the sensor? A complete set
of Nyquist samples would suffice, or a bank of matched filters
could be employed. From a CSP standpoint, however, the solu-
tion is more elegant: one need only collect a small number of
compressive measurements from which many candidate signals
can be tested, many signal models can be posited, and many
other inference tasks can be solved. What one loses in perfor-
mance compared to a tailor-made matched filter, one may gain
in simplicity and in the ability to adapt to future information
about the problem at hand. In this sense, CSP impacts sensors
in a similar manner as DSP impacted analog signal processing:
expensive and inflexible analog components can be replaced by
a universal, flexible, and programmable digital system.

C. Applications

A stylized application to demonstrate the potential and
applicability of the results in this paper is summarized in
Fig. 1. The figure schematically presents a wide-band signal
monitoring and processing system that receives signals from
a variety of sources, including various television, radio, and
cell-phone transmissions, radar signals, and satellite commu-
nication signals. The extremely wide bandwidth monitored by
such a system makes CS a natural approach for efficient signal
acquisition [10].

In many cases, the system user might only be interested in
extracting very small amounts of information from each signal.
This can be performed efficiently using the tools we describe in
the subsequent sections. For example, the user might be inter-
ested in detecting and classifying some of the signal sources, and
in estimating some parameters, such as the location, of others.
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Full-scale signal recovery might be required for only a few of
the signals in the monitored bandwidth.

The detection, estimation, and classification tools we develop
in this paper enable the system to perform these tasks much
more efficiently in the compressive domain. Furthermore, the
filtering procedure we describe facilitates the separation of sig-
nals after they have been acquired in the compressive domain so
that each signal can be processed by the appropriate algorithm,
depending on the information sought by the user.

D. Related Work

In this paper, we consider a variety of estimation and deci-
sion tasks. The data streaming community, which is concerned
with efficient algorithms for processing large streams of data,
has examined many similar problems over the past several years.
In the data stream setting, one is typically interested in esti-
mating some function of the data stream (such as an norm,
a histogram, or a linear functional) based on sketches, which
in many cases can be thought of as random projections. For a
concise review of these results, see [11]. The main differences
with our work include the following: 1) data stream algorithms
are typically designed to operate in noise-free environments on
man-made digital signals, whereas we view compressive mea-
surements as a sensing scheme that will operate in an inherently
noisy environment; 2) data stream algorithms typically provide
probabilistic guarantees, while we focus on providing determin-
istic guarantees; and 3) data stream algorithms tend to tailor the
measurement scheme to the task at hand, while we demonstrate
that it is often possible to use the same measurements for a va-
riety of signal processing tasks.

There have been a number of related thrusts involving detec-
tion and classification using random measurements in a variety
of settings. For example, in [12] sparsity is leveraged to per-
form classification with very few random measurements, while
in [13], [14] random measurements are exploited to perform
manifold-based image classification. In [15], small numbers of
random measurements have also been noted as capturing suffi-
cient information to allow robust face recognition. However, the
most directly relevant work has been the discussions of classifi-
cation in [16] and detection in [17]. We will contrast our results
to those of [16], [17] below. This paper builds upon work ini-
tially presented in [18] and [19].

E. Organization

This paper is organized as follows. Section II provides the
necessary background on dimensionality reduction and CS. In
Sections III–V, we develop algorithms for signal detection, clas-
sification, and estimation with compressive measurements. In
Section VI, we explore the problem of filtering compressive
measurements in the compressive domain. Finally, Section VII
concludes with directions for future work.

II. COMPRESSIVE MEASUREMENTS AND STABLE EMBEDDINGS

A. Compressive Sensing and Restricted Isometries

In the standard CS framework, we acquire a signal
via the linear measurements

(1)

where is an matrix representing the sampling system
and is the vector of measurements. For simplicity,
we deal with real-valued rather than quantized measurements .
Classical sampling theory dictates that, in order to ensure that
there is no loss of information, the number of samples should
be as large as the signal dimension . The CS theory, on the
other hand, allows for as long as the signal is sparse
or compressible in some basis [3], [4], [20], [21].

To understand how many measurements are required to en-
able the recovery of a signal , we must first examine the proper-
ties of that guarantee satisfactory performance of the sensing
system. In [21], Candès and Tao introduced the restricted isom-
etry property (RIP) of a matrix and established its important
role in CS. First define to be the set of all -sparse signals,
i.e.,

where denotes the set of indices on which is
nonzero. We say that a matrix satisfies the RIP of order if
there exists a constant , such that

(2)

holds for all . In other words, is an approximate
isometry for vectors restricted to be -sparse.

It is clear that if we wish to be able to recover all -sparse sig-
nals from the measurements , then a necessary condition on

is that for any pair with .
Equivalently, we require , which is guar-
anteed if satisfies the RIP of order with constant .
Furthermore, the RIP also ensures that a variety of practical al-
gorithms can successfully recover any compressible signal from
noisy measurements. The following result (Theorem 1.2 of [22])
makes this precise by bounding the recovery error of with re-
spect to the measurement noise and with respect to the -dis-
tance from to its best -term approximation denoted

Theorem 1 [Candès]: Suppose that satisfies the RIP of
order with isometry constant . Given measure-
ments of the form , where , the solution to

subject to (3)

obeys

(4)

where

Note that in practice we may wish to acquire signals that are
sparse or compressible with respect to a certain sparsity basis

, i.e., , where is represented as a unitary
matrix and . In this case, we would require instead that

satisfy the RIP, and the performance guarantee would be on
.



448 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 4, NO. 2, APRIL 2010

Before we discuss how one can actually obtain a matrix
that satisfies the RIP, we observe that we can restate the RIP in
a more general form. Let and be given.
We say that a mapping is a -stable embedding of if

(5)

for all and . A mapping satisfying this property
is also commonly called bi-Lipschitz. Observe that for a ma-
trix , satisfying the RIP of order is equivalent to being a
-stable embedding of or of .1 Further-

more, if the matrix satisfies the RIP of order then is
a -stable embedding of or ,
where .

B. Random Matrix Constructions

We now turn to the more general question of how to construct
linear mappings that satisfy (5) for particular sets and .
While it is possible to obtain deterministic constructions of such
operators, at present the most efficient designs (i.e., those re-
quiring the fewest number of rows) rely on random matrix con-
structions. We construct our random matrices as follows: given

and , we generate random matrices by choosing
the entries as independent and identically distributed (i.i.d.)
random variables. We impose two conditions on the random dis-
tribution. First, we require that the distribution yields a matrix
that is norm-preserving, which requires that

(6)

Second, we require that the distribution is a sub-Gaussian dis-
tribution, meaning that there exists a constant such that

(7)

for all . This says that the moment-generating function
of our distribution is dominated by that of a Gaussian distribu-
tion, which is also equivalent to requiring that the tails of our
distribution decay at least as fast as the tails of a Gaussian dis-
tribution. Examples of sub-Gaussian distributions include the
Gaussian distribution, the Rademacher distribution, and the uni-
form distribution. In general, any distribution with bounded sup-
port is sub-Gaussian. See [23] for more details on sub-Gaussian
random variables.

The key property of sub-Gaussian random variables that will
be of use in this paper is that for any , the random
variable is highly concentrated about ; that is, there
exists a constant that depends only on the constant in
(7) such that

(8)

where the probability is taken over all matrices (see
Lemma 6.1 of [24] or [25]).

1In general, if � is a �-stable embedding of �� ���, this is equivalent to it
being a �-stable embedding of �� � ����, where � � ���� � � � � � � � ��.
This formulation can sometimes be more convenient.

C. Stable Embeddings

We now provide a number of results that we will use exten-
sively in the sequel to ensure the stability of our compressive
detection, classification, estimation, and filtering algorithms.

We start with the simple case where we desire a -stable em-
bedding of , where and are
finite sets of points in . In the case where , this is es-
sentially the Johnson–Lindenstrauss (JL) lemma [26]–[28].

Lemma 1: Let and be sets of points in . Fix
. Let be an random matrix with i.i.d. entries

chosen from a distribution satisfying (8). If

(9)

then with probability exceeding , is a -stable embedding
of .

Proof: To prove the result we apply (8) to the
vectors corresponding to all possible . By applying
the union bound, we obtain that the probability of (5) not
holding is bounded above by . By requiring

and solving for we obtain the desired
result.

We now consider the case where is a -dimensional
subspace of and . Thus, we wish to obtain a that
nearly preserves the norm of any vector . At first glance,
this goal might seem very different than the setting for Lemma
1, since a subspace forms an uncountable point set. However,
we will see that the dimension bounds the complexity of this
space, and thus it can be characterized in terms of a finite number
of points. The following lemma is an adaptation of [29, Lemma
5.1].2

Lemma 2: Suppose that is a -dimensional subspace of
. Fix . Let be an random matrix with

i.i.d. entries chosen from a distribution satisfying (8). If

(10)

then with probability exceeding , is a -stable embedding
of .

Sketch of Proof: It suffices to prove the result for
satisfying , since is linear. We consider a finite
sampling of points of unit norm and with resolution on
the order of . One can show that it is possible to construct
such a with (see [30, Ch. 15]). Applying
Lemma 1 and setting to ensure a -stable embedding
of , we can use simple geometric arguments to conclude
that we must have a -stable embedding of for every

satisfying . For details, see [29, Lemma 5.1].
We now observe that we can extend this result beyond a single
-dimensional subspace to all possible -dimensional sub-

spaces that are defined with respect to an orthonormal basis ,
i.e., . The proof follows that of [29, Theorem 5.2].

2The constants in [29] differ from those in Lemma 2, but the proof is substan-
tially the same, so we provide only a sketch.
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Fig. 2. Random demodulator for obtaining compressive measurements of
analog signals.

Lemma 3: Let be an orthonormal basis for and fix
. Let be an random matrix with i.i.d.

entries chosen from a distribution satisfying (8). If

(11)

with denoting the base of the natural logarithm, then with
probability exceeding , is a -stable embedding of

.
Proof: This is a simple generalization of Lemma

2, which follows from the observation that there are
-dimensional subspaces aligned with

the coordinate axes of , and so the size of increases to
.

A similar technique has recently been used to demonstrate
that random projections also provide a stable embedding of non-
linear manifolds [31]: under certain assumptions on the cur-
vature and volume of a -dimensional manifold ,
a random sensing matrix with will
with high probability provide a -stable embedding of .
Under slightly different assumptions on , a number of sim-
ilar embedding results involving random projections have been
established [32]–[34].

We will make further use of these connections in the fol-
lowing sections in our analysis of a variety of algorithms for
compressive-domain inference and filtering.

D. Stable Embeddings in Practice

Several hardware architectures have been proposed that
enable the acquisition of compressive measurements in prac-
tical settings. Examples include the random demodulator [35],
random filtering and random convolution [36]–[38], and several
compressive imaging architectures [39]–[41].

We briefly describe the random demodulator as an example of
such a system. Fig. 2 depicts the block diagram of the random
demodulator. The four key components are a pseudo-random

“chipping sequence” operating at the Nyquist rate or
higher, a low-pass filter, represented by an ideal integrator with
reset, a low-rate sample-and-hold, and a quantizer. An input
analog signal is modulated by the chipping sequence and
integrated. The output of the integrator is sampled and quan-
tized, and the integrator is reset after each sample.

Mathematically, systems such as these implement a linear op-
erator that maps the analog input signal to a discrete output
vector followed by a quantizer. It is possible to relate this op-
erator to a discrete measurement matrix which maps, for ex-

ample, the Nyquist-rate samples of the input signal to the dis-
crete output vector. The resulting matrices, while random-
ized, typically contain some degree of structure. For example,
a random convolution architecture gives rise to a matrix with
a subsampled Toeplitz structure. While theoretical analysis of
these matrices remains a topic of active study in the CS com-
munity, there do exist guarantees of stable embeddings for such
practical architectures [35], [37].

E. Deterministic Versus Probabilistic Guarantees

Throughout this paper, we state a variety of theorems that
begin with the assumption that is a -stable embedding of
a pair of sets and then use this assumption to establish perfor-
mance guarantees for a particular CSP algorithm. These guar-
antees are completely deterministic and hold for any that is a
-stable embedding. However, we use random constructions as

our main tool for obtaining stable embeddings. Thus, all of our
results could be modified to be probabilistic statements in which
we fix and then argue that with high probability, a random
is a -stable embedding. Of course, the concept of “high proba-
bility” is somewhat arbitrary. However, if we fix this probability
of error to be an acceptable constant , then as we increase ,
we are able to reduce to be arbitrarily close to 0. This will typ-
ically improve the accuracy of the guarantees.

As a side comment, it is important to note that in the case
where one is able to generate a new before acquiring each
new signal , then it is often possible to drastically reduce the
required . This is because one may be able to eliminate the
requirement that is a stable embedding for an entire class of
candidate signals , and instead simply argue that for each , a
new random matrix with very small is a -stable embed-
ding of (this is a direct consequence of (8)). Thus,
if such a probabilistic “for each” guarantee is acceptable, then
it is typically possible to place no assumptions on the signals
being sparse, or indeed having any structure at all. However, in
the remainder of this paper we will restrict ourselves to the sort
of deterministic guarantees that hold for a class of signals when

provides a stable embedding of that class.

III. DETECTION WITH COMPRESSIVE MEASUREMENTS

A. Problem Setup and Applications

We begin by examining the simplest of detection problems.
We aim to distinguish between two hypotheses:

where is a known signal, is i.i.d.
Gaussian noise, and is a known (fixed) measurement matrix.
If is known at the time of the design of , then it is easy to
show that the optimal design would be to set , which
is just the matched filter. However, as mentioned in the Intro-
duction, we are often interested in universal or agnostic . As
an example, if we design hardware to implement the matched
filter for a particular , then we are very limited in what other
signal processing tasks that hardware can perform. Even if we
are only interested in detection, it is still possible that the signal
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that we wish to detect may evolve over time. Thus, we will
consider instead the case where is designed without knowl-
edge of but is instead a random matrix. From the results of
Section II, this will imply performance bounds that depend on
how many measurements are acquired and the class of pos-
sible that we wish to detect.

B. Theory

To set notation, let

chosen when true and

chosen when true

denote the false alarm rate and the detection rate, respectively.
The Neyman-Pearson (NP) detector is the decision rule that
maximizes subject to the constraint that . In order to
derive the NP detector, we first observe that for our hypotheses,

and , we have the probability density functions3

and

It is easy to show (see [42] and [43], for example) that the
NP-optimal decision rule is to compare the ratio
to a threshold , i.e., the likelihood ratio test

where is chosen such that

By taking a logarithm we obtain an equivalent test that simplifies
to

We now define the compressive detector

(12)

It can be shown that is a sufficient statistic for our detection
problem, and thus contains all of the information relevant for
distinguishing between and .

We must now set to achieve the desired performance. To
simplify notation, we define

3This formulation assumes that ������� �� so that �� is invertible. If
the entries of � are generated according to a continuous distribution and� �

� , then this will be true with high probability for discrete distributions provided
that� � � . In the event that � is not full rank, appropriate adjustments can
be made.

as the orthogonal projection operator onto , i.e., the row
space of . Since and , we then have
that

(13)

Using this notation, it is easy to show that

under
under

Thus, we have

where

To determine the threshold, we set , and thus

resulting in

(14)

In general, this performance could be either quite good or
quite poor depending on . In particular, the larger
is, then the better the performance. Recalling that is the
orthogonal projection onto the row space of , we see that

is simply the norm of the component of that lies in
the row space of . This quantity is clearly at most , which
would yield the same performance as the traditional matched
filter, but it could also be 0 if lies in the null space of . As
we will see below, however, in the case where is random, we
can expect that concentrates around .

Let us now define

SNR (15)

We can bound the performance of the compressive detector as
follows.

Theorem 2: Suppose that provides a -stable
embedding of . Then for any , we can detect
with error rate

SNR (16)

and

SNR (17)
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Proof: By our assumption that provides a
-stable embedding of , we know from (5) that

(18)

Combining (18) with (14) and recalling the definition of the
SNR from (15), the result follows.

For certain randomized measurement systems, one can an-
ticipate that will provide a -stable embedding of

. As one example, if has orthonormal rows spanning
a random subspace (i.e., it represents a random orthogonal pro-
jection), then , and so . It follows that

, and for random orthogonal
projections, it is known [27] that satisfies

(19)

with probability at least . This statement is analo-
gous to (8) but rescaled to account for the unit-norm rows of .
As a second example, if is populated with i.i.d. zero-mean
Gaussian entries (of any fixed variance), then the orientation
of the row space of has random uniform distribution. Thus,

for a Gaussian has the same distribution as
for a random orthogonal projection. It follows that Gaussian
also satisfy (19) with probability at least .

The similarity between (19) and (8) immediately implies that
we can generalize Lemmas 1, 2, and 3 to establish -stable em-
bedding results for orthogonal projection matrices . It fol-
lows that, when is a Gaussian matrix [with entries satisfying
(6)] or a random orthogonal projection (multiplied by ),
the number of measurements required to establish a -stable
embedding for on a particular signal family is
equivalent to the number of measurements required to establish
a -stable embedding for on .

Theorem 2 tells us in a precise way how much information we
lose by using random projections rather than the signal samples
themselves, not in terms of our ability to recover the signal as is
typically addressed in CS, but in terms of our ability to solve a
detection problem. Specifically, for typical values of

SNR (20)

which increases the miss probability by an amount determined
by the SNR and the ratio .

In order to more clearly illustrate the behavior of as
a function of , we also establish the following corollary of
Theorem 2.

Corollary 1: Suppose that provides a -stable
embedding of . Then for any , we can detect
with success rate

(21)

where and are absolute constants depending only on ,
, and the SNR.

Fig. 3. Effect of� on � ��� predicted by (20) (SNR � �� dB).

Proof: We begin with the following bound from (13.48) of
[44]

(22)

which allows us to bound as follows. Let
SNR . Then

Thus, if we let

(23)

we obtain the desired result.
Thus, for a fixed SNR and signal length, the detection proba-

bility approaches 1 exponentially fast as we increase the number
of measurements.

C. Experiments and Discussion

We first explore how affects the performance of the com-
pressive detector. As described above, decreasing does cause
a degradation in performance. However, as illustrated in Fig. 3,
in certain cases (relatively high SNR; 20 dB in this example)
the compressive detector can perform almost as well as the tra-
ditional detector with a very small fraction of the number of
measurements required by traditional detection. Specifically, in
Fig. 3 we illustrate the receiver operating characteristic (ROC)
curve, i.e., the relationship between and predicted by
(20). Observe that as increases, the ROC curve approaches
the upper-left corner, meaning that we can achieve very high de-
tection rates while simultaneously keeping the false alarm rate
very low. As grows we see that we rapidly reach a regime
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Fig. 4. Effect of � on � predicted by (20) at several different SNR levels
(� � ���).

where any additional increase in yields only marginal im-
provements in the tradeoff between and .

Furthermore, the exponential increase in the detection prob-
ability as we take more measurements is illustrated in Fig. 4,
which plots the performance predicted by (20) for a range of
SNRs with . However, we again note that in practice
this rate can be significantly affected by the SNR, which deter-
mines the constants in the bound of (21). These results are con-
sistent with those obtained in [17], which also established that

should approach 1 exponentially fast as is increased.
Finally, we close by noting that for any given instance of ,

its ROC curve may be better or worse than that predicted by
(20). However, with high probability it is tightly concentrated
around the expected performance curve. Fig. 5 illustrates this
for the case where is fixed; the SNR is 20 dB, has i.i.d.
Gaussian entries, , and . The predicted
ROC curve is illustrated along with curves displaying the best
and worst ROC curves obtained over 100 independent draws of

. We see that our performance is never significantly different
from what we expect. Furthermore, we have also observed that
these bounds grow significantly tighter as we increase ; so for
large problems the difference between the predicted and actual
curves will be insignificant. We also note that while some of
our theory has been limited to that are Gaussian or random
orthogonal projections, we observe that in practice this does not
seem to be necessary. We repeated the above experiment for
matrices with independent Rademacher entries and observed no
significant differences in the results.

IV. CLASSIFICATION WITH COMPRESSIVE MEASUREMENTS

A. Problem Setup and Applications

We can easily generalize the setting of Section III to the
problem of binary classification. Specifically, if we wish to
distinguish between and , then it is
equivalent to be able to distinguish and

. Thus, the conclusions for the case of binary
classification are identical to those discussed in Section III.

Fig. 5. Concentration of ROC curves for random � near the expected ROC
curve (SNR � �� dB, � � ����� , � � ����).

More generally suppose that we would like to distinguish be-
tween the hypotheses

for , where each is one of our known
signals and as before, is i.i.d. Gaussian noise
and is a known matrix.

It is straightforward to show (see [42] and [43], for example),
in the case where each hypothesis is equally likely, that the clas-
sifier with minimum probability of error selects the that min-
imizes

(24)

If the rows of are orthogonal and have equal norm, then this
reduces to identifying which is closest to . The
term arises when the rows of are not orthogonal because the
noise is no longer uncorrelated.

As an alternative illustration of the classifier behavior, let us
suppose that for some . Then, starting with
(24), we have

(25)

where (25) follows from the same argument as (13). Thus, we
can equivalently think of the classifier as simply projecting
and each candidate signal onto the row space of and then
classifying according to the nearest neighbor in this space.

B. Theory

While in general it is difficult to find analytical expressions
for the probability of error even in non-compressive classifica-
tion settings, we can provide a bound for the performance of the
compressive classifier as follows.
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Theorem 3: Suppose that provides a -stable
embedding of , and let . Let

(26)

denote the minimum separation among the . For some
, let , where is

i.i.d. Gaussian noise. Then with probability at least

(27)

the signal can be correctly classified, i.e.,

(28)

Proof: Let . We will argue that with high
probability. From (25) we have that

and

where we have defined to simplify notation.
Let us define as the orthogonal projection onto
the 1-dimensional span of , and . Then we
have

and

Thus, if and only if

or equivalently, if

or equivalently, if

or equivalently, if

The quantity is a scalar, zero-mean Gaussian
random variable with variance

Because provides a -stable embedding of ,
and by our assumption that , we have that

. Thus, using also (22), we have

Finally, because is compared to other candidates, we
use a union bound to conclude that (28) holds with probability
exceeding that given in (27).

We see from the above that, within the -dimensional mea-
surement subspace (as mapped to by ), we will have a com-
paction of distances between points in by a factor of approxi-
mately . However, the variance of the additive noise in
this subspace is unchanged. In other words, the noise present
in the test statistics does not decrease, but the relative sizes of
the test statistics do. Hence, just as in detection [see (20)], the
probability of error of our classifier will increase upon projec-
tion to a lower-dimensional space in a way that depends on the
SNR and the number of measurements. However, it is again im-
portant to note that in a high-SNR regime, we may be able to
successfully distinguish between the different classes with very
few measurements.

C. Experiments and Discussion

In Fig. 6, we display experimental results for classification
among test signals of length . The signals

, , and are drawn according to a Gaussian distribution
with mean 0 and variance 1 and then fixed. For each value of

, a single Gaussian is drawn and then is computed by
averaging the results over realizations of the noise vector .
The error rates are very similar in spirit to those for detection
(see Fig. 4). The results agree with Theorem 3, in which we
demonstrate that, as was the case for detection, as increases
the probability of error decays expoentially fast. This also agrees
with the related results of [16].

V. ESTIMATION WITH COMPRESSIVE MEASUREMENTS

A. Problem Setup and Applications

While many signal processing problems can be reduced to
a detection or classification problem, in some cases we cannot
reduce our task to selecting among a finite set of hypotheses.
Rather, we might be interested in estimating some function of
the data. In this section we will focus on estimating a linear
function of the data from compressive measurements.

Suppose that we observe and wish to estimate
from the measurements , where is a fixed test vector.
In the case where is a random matrix, a natural estimator is
essentially the same as the compressive detector. Specifically,
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Fig. 6. Effect of � on � (the probability of error of a compressive domain
classifier) for � � � ������� at several different SNR levels, where SNR �
	
 ��� �� �� 
.

suppose we have a set of linear functions we would like
to estimate from . Example applications include computing the
coefficients of a basis or frame representation of the signal, es-
timating the signal energy in a particular linear subspace, para-
metric modeling, and so on. One potential estimator for this sce-
nario, which is essentially a simple generalization of the com-
pressive detector in (12), is given by

(29)

for . While this approach, which we shall refer
to as the orthogonalized estimator, has certain advantages, it is
also enlightening to consider an even simpler estimator, given
by

(30)

We shall refer to this approach as the direct estimator since it
eliminates the orthogonalization step by directly correlating the
compressive measurements with . We will provide a more
detailed experimental comparison of these two approaches
below, but in the proof of Theorem 4 we focus only on the
direct estimator.

B. Theory

We now provide bounds on the performance of our simple
estimator.4 This bound is a generalization of Lemma 2.1 of [22]
to the case where .

Theorem 4: Suppose that and and that is a
-stable embedding of , then

(31)

4Note that the same guarantee can be established for the orthogonalized es-
timator under the assumption that ���� is a �-stable embedding of
��	� � ��
.

Proof: We first assume that . Since

and since is a -stable embedding of both and ,
we have that

From the parallelogram identity we obtain

Similarly, one can show that . Thus,

From the bilinearity of the inner product the result follows for
, with arbitrary norm.

One way of interpreting our result is that the angle between
two vectors can be estimated accurately; this is formalized as
follows.

Corollary 2: Suppose that and and that is a
-stable embedding of . Then

where denotes the angle between two vectors.
Proof: Using the standard relationship between inner prod-

ucts and angles, we have

and

Thus, from (31) we have

(32)

Now, using (5), we can show that

from which we infer that

(33)

Therefore, combining (32) and (33) using the triangle in-
equality, the desired result follows.

While Theorem 4 suggests that the absolute error in esti-
mating must scale with , this is probably the best
we can expect. If the terms were omitted on the right
hand side of (31), then one could estimate with arbitrary
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Fig. 7. Average error in the estimate of the mean of a fixed signal �.

accuracy using the following strategy: 1) choose a large posi-
tive constant ; 2) estimate the inner product ,
obtaining an accuracy ; and then 3) divide the estimate by

to estimate with accuracy . Similarly, it is
not possible to replace the right hand side of (31) with an ex-
pression proportional merely to , as this would imply that

exactly when , and unfortunately
this is not the case. (Were this possible, one could exploit this
fact to immediately identify the non-zero locations in a sparse
signal by letting , the canonical basis vector, for

.)

C. Experiments and Discussion

In Fig. 7, we display the average estimation error
for the orthogonalized and direct estimators, i.e.,

and
respectively. The signal is a length

vector with entries distributed according to a
Gaussian distribution with mean 1 and unit variance. We choose

to compute the mean of . The result
displayed is the mean error averaged over different draws
of Gaussian with fixed. Note that we obtain nearly identical
results for other candidate , including both highly correlated
with and nearly orthogonal to . In all cases, as increases,
the error decays because the random matrices become
-stable embeddings of for smaller values of . Note that

for small values of , there is very little difference between
the orthogonalized and direct estimators. The orthogonalized
estimator only provides notable improvement when is large,
in which case the computational difference is significant. In
this case one must weigh the relative importance of speed
versus accuracy in order to judge which approach is best, so the
proper choice will ultimately be dependent on the application.

In the case where , Theorem 4 is a deterministic ver-
sion of Theorem 4.5 of [45] and Lemma 3.1 of [46], which both
show that for certain random constructions of , with proba-
bility at least

(34)

In [45] while in [46] more sophisticated methods
are used to achieve a bound on of the form as in
(8). Our result extends these results to a wider class of random
matrices. Furthermore, our approach generalizes naturally to si-
multaneously estimating multiple linear functions of the data.

Specifically, it is straightforward to extend our analysis be-
yond the estimation of scalar-valued linear functions to more
general linear operators. Any finite-dimensional linear operator
on a signal can be represented as a matrix multiplica-
tion , where has size for some . Decomposing
in terms of its rows, this computation can be expressed as

...
...

From this point, the bound (31) can be applied to each compo-
nent of the resulting vector. It is also interesting to note that by
setting , we can observe that

This could be used to establish deterministic bounds on the
performance of the thresholding signal recovery algorithm de-
scribed in [46], which simply thresholds to keep only the

largest elements.
We can also consider more general estimation problems in the

context of parameterized signal models. Suppose, for instance,
that a -dimensional parameter controls the generation of a
signal , and we denote by the -dimensional space
to which the parameter belongs. Common examples of such
articulations include the angle and orientation of an edge in an
image ( ), or the start and end frequencies and times of
a linear radar chirp ( ). In cases such as these, the set of
possible signals of interest

forms a nonlinear -dimensional manifold. The actual position
of a given signal on the manifold reveals the value of the un-
derlying parameter . It is now understood [47] that, because
random projections can provide -stable embeddings of non-
linear manifolds using measurements
[31], the task of estimating position on a manifold can also
be addressed in the compressive domain. Recovery bounds on

akin to (4) can be established; see [47] for more details.

VI. FILTERING WITH COMPRESSIVE MEASUREMENTS

A. Problem Setup and Applications

In practice, it is often the case that the signal we wish to ac-
quire is contaminated with interference. The universal nature
of compressive measurements, while often advantageous, can
also increase our susceptibility to interference and significantly
affect the performance of algorithms such as those described
in Sections III–V. It is therefore desirable to remove unwanted
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signal components from the compressive measurements before
they are processed further.

More formally, suppose that the signal consists of
two components

where represents the signal of interest and represents an
unwanted signal that we would like to reject. We refer to as
interference in the remainder of this section, although it might
be the signal of interest for a different system module. Sup-
posing we acquire measurements of both components simulta-
neously

(35)

our goal is to remove the contribution of from the measure-
ments while preserving the information about . In this sec-
tion, we will assume that and that . In our
discussion, we will further assume that is a -stable embed-
ding of , where is a set with a simple relationship to

and .
While one could consider more general interference models,

we restrict our attention to the case where either the interfering
signal or the signal of interest lives in a known subspace. For
example, suppose we have obtained measurements of a radio
signal that has been corrupted by narrow band interference such
as a TV or radio station operating at a known carrier frequency.
In this case, we can project the compressive measurements into
a subspace orthogonal to the interference, and hence eliminate
the contribution of the interference to the measurements. We
further demonstrate that provided that the signal of interest is
orthogonal to the set of possible interference signals, the projec-
tion operator maintains a stable embedding for the set of signals
of interest. Thus, the projected measurements retain sufficient
information to enable the use of efficient compressive-domain
algorithms for further processing.

B. Theory

We first consider the case where is a -dimensional sub-
space, and we place no restrictions on the set . We will later
see that by symmetry the methods we develop for this case will
have implications for the setting where is a -dimensional
subspace and where is a more general set.

We filter out the interference by constructing a linear oper-
ator that operates on the measurements . The design of
is based solely on the measurement matrix and knowledge of
the subspace . Our goal is to construct a that maps
to zero for any . To simplify notation, we assume that

is an matrix whose columns form an orthonormal
basis for the -dimensional subspace , and we define the

matrix . Letting denote
the Moore–Penrose pseudoinverse of , we define

(36)

and

(37)

The resulting is our desired operator : it is an orthogonal
projection operator onto the orthogonal complement of ,
and its nullspace equals .

Using Theorem 4, we now show that the fact that is a stable
embedding allows us to argue that preserves the structure
of (where denotes the orthogonal comple-
ment of and denotes the orthogonal projection onto

), while simultaneously cancelling out signals from .5 Ad-
ditionally, preserves the structure in while nearly can-
celling out signals from .

Theorem 5: Suppose that is a -stable embedding of
, where is a -dimensional subspace of with

orthonormal basis . Set and define and as
in (36) and (37). For any we can write ,
where and . Then

(38)

and

(39)

Furthermore,

(40)

and

(41)

Proof: We begin by observing that since and are
orthogonal, the decomposition is unique. Further-
more, since , we have that and hence by
the design of , and , which
establishes (38) and (39).

In order to establish (40) and (41), we decompose as
. Since is an orthogonal projec-

tion we can write

(42)

Furthermore, note that and , so that

(43)

Since is a projection onto there exists a such
that . Since , we have that ,

5Note that we do not claim that � preserves the structure of � , but rather
the structure of � . This is because we do not restrict � to be orthogonal to
the subspace � which we cancel. Clearly, we cannot preserve the structure
of the component of � that lies within � while simultaneously eliminating
interference from � .
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and since is a subspace, , and so we may
apply Theorem 4 to obtain

Since and is a -stable embedding of ,
we have that

Recalling that , we obtain

Combining this with (43), we obtain

Since , , and thus we obtain
(41). Since we trivially have that , we can com-
bine this with (42) to obtain

Again, since , we have that

which simplifies to yield (40).
Corollary 3: Suppose that is a -stable embedding of

, where is a -dimensional subspace of with
orthonormal basis . Set and define and as
in (36) and (37). Then is a -stable embedding
of and is a -stable embedding of .

Proof: This follows from Theorem 5 by picking , in
which case , or picking , in which case .

Theorem 5 and Corollary 3 have a number of practical ben-
efits. For example, if we are interested in solving an inference
problem based only on the signal , then we can use or
to filter out the interference and then apply the compressive do-
main inference techniques developed above. The performance
of these techniques will be significantly improved by elimi-
nating the interference due to . Furthermore, this result also
has implications for the problem of signal recovery, as demon-
strated by the following corollary.

Corollary 4: Suppose that is an orthonormal basis for
and that is a -stable embedding of ,

where is an submatrix of . Set and
define and as in (36) and (37). Then is a

-stable embedding of .
Proof: This follows from the observation that

and then applying Corollary
3.

We emphasize that in the above Corollary,
will simply be the original family of sparse signals but with

zeros in positions indexed by . One can easily verify that if
, then , and thus Corollary 4

is sufficient to ensure that the conditions for Theorem 1 are satis-
fied. We therefore conclude that under a slightly more restrictive
bound on the required RIP constant, we can directly recover a
sparse signal of interest that is orthogonal to the interfering

without actually recovering . Note that in addition to fil-
tering out true interference, this framework is also relevant to the
problem of signal recovery when the support is partially known,
in which case the known support defines a subspace that can
be thought of as interference to be rejected prior to recovering
the remaining signal. Thus, our approach provides an alternative
method for solving and analyzing the problem of CS recovery
with partially known support considered in [48]. Furthermore,
this result can also be useful in analyzing iterative recovery al-
gorithms (in which the signal coefficients identified in previous
iterations are treated as interference) or in the case where we
wish to recover a slowly varying signal as it evolves in time, as
in [49].

This cancel-then-recover approach to signal recovery has a
number of advantages. Observe that if we attempt to first re-
cover and then cancel , then we require the RIP of order

to ensure that the recover-then-cancel approach
will be successful. In contrast, filtering out followed by re-
covery of requires the RIP of order only . In certain
cases (when is significantly larger than ), this results in
a substantial decrease in the required number of measurements.
Furthermore, since all recovery algorithms have computational
complexity that is at least linear in the sparsity of the recovered
signal, this can also result in substantial computational savings
for signal recovery.

C. Experiments and Discussion

In this section, we evaluate the performance of the cancel-
then-recover approach suggested by Corollary 4 . Rather than

-minimization we use the iterative CoSaMP greedy algorithm
[7] since it more naturally naturally lends itself towards a simple
modification described below. More specifically, we evaluate
three interference cancellation approaches.

1) Cancel-then-recover: This is the approach advocated in
this paper. We cancel out the contribution of to the mea-
surements and directly recover using the CoSaMP al-
gorithm.

2) Modified recovery: Since we know the support of ,
rather than cancelling out the contribution from to the
measurements, we modify a greedy algorithm such as
CoSaMP to exploit the fact that part of the support of is
known in advance. This modification is made simply by
forcing CoSaMP to always keep the elements of in the
active set at each iteration. After recovering , we then set

for to filter out the interference.
3) Recover-then-cancel: In this approach, we ignore the fact

that we know the support of and try to recover the signal
using the standard CoSaMP algorithm, and then set
for as before.
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Fig. 8. SNR of � recovered using the three different cancellation approaches
for different ratios of � to � compared to the performance of an oracle.

In our experiments, we set , , and
. We then considered values of from 1 to 100.

We choose and by selecting random, non-overlapping
sets of indices, so in this experiment, and are orthogonal
(although they need not be in general, since will always be
orthogonal to ). For each value of , we generated 2000
test signals where the coefficients were selected according to a
Gaussian distribution and then contaminated with an -dimen-
sional Gaussian noise vector. For comparison, we also consid-
ered an oracle decoder that is given the support of both and

and solves the least-squares problem restricted to the known
support set.

We considered a range of signal-to-noise ratios (SNRs) and
signal-to-interference ratios (SIRs). Fig. 8 shows the results for
the case where and are normalized to have equal energy
(an SIR of 0 dB) and where the variance of the noise is selected
so that the SNR is 15 dB. Our results were consistent for a wide
range of SNR and SIR values, and we omit the plots due to space
limitations.

Our results show that the cancel-then-recover approach per-
forms significantly better than both of the other methods as
grows larger than , in fact, the cancel-then-recover approach
performs almost as well as the oracle decoder for the entire
range of . We also note that while the modified recovery
method did perform slightly better than the recover-then-cancel
approach, the improvement is relatively minor.

We observe similar results in Fig. 9 for the recovery time
(which includes the cost of computing in the cancel-then-
recover approach). The cancel-then-recover approach performs
significantly faster than the other approaches as grows larger
than .

We also note that in the case where admits a fast trans-
form-based implementation (as is often the case for the con-
structions described in Section II-D) the projections and

can leverage the structure of in order to ease the com-
putational cost of applying and . For example, may
consist of random rows of a discrete Fourier transform or a per-
muted Hadamard Transform matrix. In such a scenario, there

Fig. 9. Recovery time for the three different cancellation approaches for dif-
ferent ratios of � to � .

are fast transform-based implementations of and . By ob-
serving that

we see that one can use the conjugate gradient method or
Richardson iteration to efficiently compute and by exten-
sion [7].

VII. CONCLUSION

In this paper, we have taken some first steps towards a theory
of compressive signal processing (CSP) by showing that com-
pressive measurements can be effective for a variety of detec-
tion, classification, estimation, and filtering problems. We have
provided theoretical bounds backed up by experimental results
that indicate that in many applications it can be more efficient
and accurate to extract information directly from a signal’s com-
pressive measurements than first recover the signal and then ex-
tract the information. It is important to reemphasize that our
techniques are universal and agnostic to the signal structure and
provide deterministic guarantees for a wide variety of signal
classes.

In the future we hope to provide a more detailed analysis of
the classification setting and consider more general models, as
well as consider detection, classification, and estimation settings
that utilize more specific models, such as sparsity or manifold
structure.
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