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ABSTRACT
Despite the apparent need for adaptive, nonlinear techniques for
dimensionality reduction, random linear projections have proven
to be extremely effective at capturing signal structure in cases
where the signal obeys a low-dimensional model. Similarly, ran-
dom projections are a useful tool for solving problems where the
ultimate question of interest about the data requires a small amount
of information compared to the dimensionality of the data itself.
The success of random projections in both of these arenas can be
traced to an elementary concentration of measure property, which
allows us to extend the utility of random projections to a variety of
new signal models and applications.

1. INTRODUCTION
Over the past several years, sensors and signal processing al-
gorithms and hardware have been under increasing pressure to
ef�ciently acquire, store, and process ever larger and higher-
dimensional data sets. In some cases, dimensionality reduction
techniques can help to reduce (the dimension of) this burden
by extracting key low-dimensional information about the high-
dimensional signals from which we can later infer the key prop-
erties of the original data. This low-dimensional information can
often be more ef�ciently acquired, stored, and/or processed than
the original high-dimensional data.

The success of dimensionality reduction often derives from
one of two sources: (1) Low-dimensional signal models: The
signals of interest may have �few degrees of freedom� relative to
their size N . Examples include sparse and compressible signals,
manifolds, etc. (2) Low-complexity inference: The problem we
wish to solve may have �low-complexity� in that its solution re-
quires a small amount of information relative to the dimension N .
Examples include function estimation, signal detection, classi�ca-
tion, etc.

Standard techniques for dimensionality reduction often at-
tempt to discover this low-dimensional structure from a collection
of training data and then adaptively construct a nonlinear map-
ping that preserves the key information. However, during the last
decade, a number of communities have discovered that a surpris-
ingly effective technique for dimensionality reduction is simply
to collect a reduced set of random, nonadaptive, linear measure-
ments of the data.

In the computer science community, random measurements
have been proposed for solving nearest neighbor and clustering
problems, estimating database statistics, etc. [1, 2]. More recently,
in the mathematics community, random measurements have been
proposed as a means for the compressive sampling of sparse sig-
nals: obtaining a reduced set of measurements from which a sparse
signal can be recovered [3, 4]. In each of these cases, random
projections capture the substantive information about a signal (or
group of signals) without regard to a priori knowledge about the

data itself or to any structure within the data that might aid ac-
quisition. This aspect is very attractive for practical applications,
as there is no need for preprocessing on the data to discover its
structure. From an engineering perspective, this has spurred re-
search into developing physical devices for directly acquiring low-
rate digital compressive measurements of high-bandwidth analog
signals [5].

We will discuss a number of possible extensions of random
projections in signal processing, with applications much more
broad than have previously been explored by the above commu-
nities. This work is inspired by the fact that a solid mathematical
theory actually connects much of the previous work. In partic-
ular, we have recently shown that the Johnson-Lindenstrauss (JL)
Lemma [6], which ensures an isometric embedding of a �nite point
cloud under a random dimensionality-reducing projection and is
fundamental to several results in computer science, also under-
lies the CS theory via a concentration of measure inequality [7].
This simple inequality, stating that the norm of a signal is well-
preserved under a random dimensionality-reducing projection, al-
lows us to show that in many settings the distinguishing character-
istics of a signal can be encoded in a few random measurements.
We will discuss a number of implications of this result in sig-
nal processing applications, both for processing signals obeying
a low-dimensional signal model and for solving low-complexity
inference problems. The following sections give a brief overview
of some of these topics.

2. LOW-DIMENSIONAL SIGNAL MODELS
In many cases, one may have a model for the signals of interest
that carries a notion conciseness; for example, one may believe
that a signal x ∈ RN has �few degrees of freedom� relative to
its size N . Letting F ⊂ RN denote the class of signals of in-
terest under a given model, many concise models correspond to
a low-dimensional geometric structure for F , which suggests the
possibility for and gives new insight into dimensionality reduction
techniques.
Sparsity. In a sparse signal model, every signal from the class F
can again be represented (either exactly or approximately) using a
K-term representation from some basis Ψ, but the relevant set of
basis elements may change from signal to signal. Transform cod-
ing algorithms (which form the heart of many modern signal and
image compression standards such as JPEG and JPEG-2000 [10])
exploit this �conciseness�. With few exceptions, such approaches
tend to be nonlinear (owing to the nonlinear structure of the sig-
nal class F) and adaptive (requiring a search for the few relevant
dictionary vectors for each signal of interest).

In the last two years, however, a radically different tech-
nique known as Compressed Sensing (CS) [3, 4] has emerged
that relies only on nonadaptive, linear, random projections for
dimensionality reduction. The CS theory states that with high
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Fig. 1. Manifold learning from compressive measurements. (a) Model for data. We generate 1000 images of a shifted disk, each of size
N = 64 × 64 = 4096. (b) True θ0 and θ1 parameter values for original data in RN . (c) ISOMAP [8] embedding learned from (left)
original data in RN and (right) a random projection of the data to R15. (d) Laplacian eigenmaps [9] embedding learned from (left) original
data in RN and (right) a random projection of the data to R15.

probability, every K-sparse signal x can be recovered from just
M = O(K log(N/K)) linear projections onto random vectors in
RN [3, 4]. CS decoding involves recovering the signal x ∈ RN

from its measurements y = Φx, where y ∈ RM and Φ is a ran-
dom M × N matrix. Although such inverse problems are gener-
ally ill-posed whenever M < N , CS recovery algorithms exploit
the additional assumption of sparsity in the basis Ψ to identify the
correct signal x from an uncountable number of possibilities. In
a sense, CS allows us to directly acquire signals is a compressed
form, opening new possibilities in signal acquisition, imaging, and
sensor networks [5, 11�17].
Manifolds. Manifold models for the signal class F generalize the
notion of concise signal structure beyond the framework of sparse
representations. These models arise in more broad cases where
(i) a K-dimensional parameter θ can be identi�ed that carries the
relevant information about a signal and (ii) the signal xθ ∈ RN

changes as a continuous (typically nonlinear) function of these pa-
rameters. Low-dimensional manifolds have also been proposed as
approximate models for nonparametric signal classes such as im-
ages of human faces or handwritten digits [18, 19].

Similar to the case of the sparse models described above, the
low-dimensional geometry of manifold signal models makes them
amenable to dimensionality reduction in general and random pro-
jections in particular. In parallel with the CS theory, we have estab-
lished that from a suf�cient number M = O(K log(N)) of ran-
dom measurements, with high probability, all pairwise distances
between points on a manifold F ⊂ RN are well-preserved under
the mapping Φ to RM [20]. We will discuss the possible applica-
tions of this fact in CS recovery, which can be extended beyond
sparse signals to include manifold-modeled signals.

3. LOW-COMPLEXITY INFERENCE
Even in the more general case where we do not have a low-
dimensional signal model, there is still hope that dimensionality
reduction may be possible when the problem that we ultimately
wish to solve is of low-complexity in that it requires only a small
amount of information to solve compared to the dimension N .
There is a spectrum of such problems, ranging from the estimation
of arbitrary functions of the data to classi�cation and detection.
Estimation. Consider a signal x ∈ RN , and suppose that we wish
to estimate some function f(x) but only observe the measurements
y = Φx, where Φ is again an M ×N matrix. The data streaming
community � which is concerned with processing large streams
of data using ef�cient algorithms � has previously analyzed this
problem for many common functions (such as linear functions, `p

norms, and histograms). These estimates are often based on so-
called sketches, which can be thought of as random projections.
For a concise review of results from this community, see [2].

As an example, in the case where f is a linear function, one
can show that the estimation error (relative to the norms of x and f )

can be bounded by a constant determined by M . We have recently
demonstrated that this result, originally proven in [21], holds for a
wide class of random matrices, and can be viewed as a straightfor-
ward consequence of the same concentration of measure inequality
that has proven useful for CS and in proving the JL Lemma [22].
Detection. As opposed to estimation where there is a continuum
of possible values, in detection one simply wishes to answer the
question, is a (known) signal present in the observed signal? To
solve this problem, it is suf�cient to estimate the relevant suf�cient
statistic. In [22] we have shown, again using the concentration
of measure inequality, that we can estimate the suf�cient statistic
for such a detection problem from random projections, where the
quality of this estimate depends on the SNR. We make no assump-
tions on the signal of interest s, and hence we can build systems
capable of detecting s even when s is not known in advance. Thus
we can use random projections for dimensionality-reduction in the
detection setting without knowing the relevant structure.
Classi�cation. Similarly, random projections have long been used
for a variety of classi�cation and clustering problems. The JL
Lemma is often exploited in this setting to compute approximate
nearest neighbors, which is naturally related to classi�cation [1].
The key result that random projections result in an isometric em-
bedding allows us to generalize this work to several new classi�-
cation algorithms and settings. See [22] for some initial steps in
this direction.

4. LOW-DIMENSIONAL MODELS MEET
LOW-COMPLEXITY INFERENCE

While random projections have frequently been exploited to take
advantage of low-dimensional models or to solve low-complexity
inference problems, we believe that these techniques may be most
useful when these areas begin to overlap.

For example, in [23] we study the case of sparse signal de-
tection in the presence of inference/noise. We propose a greedy
algorithm for solving this problem and demonstrate that the num-
ber of measurements and computations necessary for successful
detection is signi�cantly lower than what would be necessary for
successful reconstruction. Simulations show this algorithm is very
resilient to strong interference, additive noise, and measurement
quantization.

Random projections can also be used to solve low-complexity
inference problems in the context of manifold signal models. The
utility of random projections in such settings comes in the form of
several corollaries of the distance-preserving result mentioned in
Sec. 2: many key properties of a manifold are in fact preserved un-
der a random projection to lower-dimensional space, including di-
mension, topology, geodesic distances, and curvature. This opens
several new application areas for random projections in manifold-
based learning, recognition, classi�cation. We will present several
promising experiments in these areas (see Fig. 1 for one example).
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