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ABSTRACT  

Various activities of construction equipment are associated with certain distinctive sound 

patterns (e.g. excavating soil, breaking rocks, sawing and drilling concrete, etc.). Considering this 

fact, it is possible to extract information about construction operations by recording the audio at a 

construction site and then processing this data to determine what activities are being performed. 

Audio-based analysis of construction operations requires specific hardware and software choices 

to achieve satisfactory performance. This paper presents results from studies of the impact of these 

choices on the ultimate performance on the task of interest. To begin this project, an audio-based 

system has been developed to recognize the routine sounds of construction machinery. This system 

combines a denoising algorithm to enhance audio quality and a Short-Time Fourier Transform 

(STFT) and Support Vector Machine (SVM) to classify the performed activities of the machines. 

The next step in the project evaluates three types of microphones (off-the-shelf, contact, and a 

multichannel microphone array) and two ways to install the microphones (placed in machines 
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cabin and installed on the jobsite in relatively proximity to the machines). Two different jobsite 

conditions have also been considered: 1) jobsites with single machines and 2) jobsites with 

multiple machines operating simultaneously. In terms of software settings, two different SVM 

classifiers (RBF and Linear Kernels) and two common frequency feature extraction techniques 

(STFT and CWT) were selected and evaluated. Experimental data was gathered and used to 

optimize hardware settings, tune algorithmic parameters, and evaluate different approaches. 

Results depict an accuracy over 85% for the proposed audio-based recognition system.  

 

Key Words: Microphone arrays; audio signal processing; construction equipment; activity 

recognition; Fourier Transform. 

INTRODUCTION 

Recognizing the activities of construction heavy equipment is a major step toward 

productivity analysis of a jobsite. Aside from productivity monitoring, recognizing the activities 

of construction machinery provides useful information for various other purposes including 

scheduling and cost estimation (Rashidi, Nejad and Maghiar 2014), job site layout analysis and 

decision making (Pradhananga and Teizer 2013), and monitoring and optimization of fuel 

consumption (Akhavian and Behzadan 2013a). Some manufacturers have started to integrate their 

proprietary monitoring devices to new equipment, but construction contractors are unlikely to have 

a fleet composed entirely by new and single-manufacturer equipment for this to represent an 

immediate solution. The common alternative approaches for heavy equipment activity recognition 

require active and/or passive external sensors (Ahn, Lee and Peña-Mora 2015, Akhavian and 

Behzadan 2013b, Akhavian and Behzadan 2015, Brilakis, Fathi and Rashidi 2011, Golparvar-Fard, 
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Heydarian and Niebles 2013, Gong, Caldas and Gordon 2011, Heydarian, Golparvar-Fard and 

Niebles 2012, Kim and Caldas 2013, Rashidi, Fathi and Brilakis 2011, Rezazadeh Azar and 

McCabe 2012, Zhu, et al. 2016). Active sensors include GPS and micro-electro-mechanical 

systems (MEMS) devices such as accelerometers and gyroscopes, while passive sensors include 

image/video processing using computer vision algorithms (National Instruments 2016). 

During the past few years, another category of input data, audio, has been investigated by 

researchers for recognizing various activities of construction heavy equipment and machines. The 

idea is that construction heavy equipment generates distinct sound patters while performing 

different activities that can provide useful information when properly recorded and processed. gap 

(Cheng, et al 2017; Cho, et al 2017; Yang and Cao 2015, Cao et al, 2016). The idea of analyzing 

sounds generated by various engineering systems and devices has appeared in several research and 

application areas such as speech recognition, audio-based navigation of robots, the use of sonar in 

the exploration and mapping, ultrasonic signal processing for condition based maintenance (CBM) 

in manufacturing workplaces (Bengtsson, et al. 2004, Greenemeier 2008), and audio signal 

processing for feature recognition in medical devices. Each of these applications require their own 

hardware and software settings (types of microphone and other acoustic recording devices, layout 

of microphones, number and distance between the sound capturing devices, etc.)  

Despite the widespread use of audio signal processing techniques for analysis and modeling 

of various engineering techniques, applications of these methods in construction management area 

is still in early stages of development. This paper summarizes recent studies conducted by the 

authors identifying necessary hardware devices and computing techniques, mostly suitable for 

capturing and processing audio files in large scale, noisy, and cluttered construction jobsites. 
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LITERATURE REVIEW: ACOUSTICAL MODELING OF ENGINEERING SYSTEMS 

Bengtsson, et al. (2004) define audio-based feature identification as a three-module process 

(Fig. 1). First, the sound is recorded into a computer as an input to the processing module. The 

processing module consists of two steps: pre-processing to remove unwanted noise and to extract 

a period of interest and feature extraction to identify characteristic features of the audio sample 

and create a feature vector. Once a feature vector is created, the condition monitoring and diagnosis 

module consists in comparing the audio sample to an existing library and providing a condition 

diagnosis. If the software is in the learning mode, newly-identified vectors are stored into the case 

library. Although this model describes ultrasound-based CBM systems, it is characteristic to most 

audio-based machine learning practices and can be applied to other fields. 

Some typical applications of ultrasound-based CBM include: bearing inspection; testing 

gears/gearboxes; pumps; motors; steam trap inspection; valve testing; detection/trending of 

cavitation; compressor valve analysis; leak detection in pressure and vacuum systems such as 

boilers, heat exchangers, condensers, chillers, tanks, pipes, hatches, hydraulic systems, 

compressed air audits, specialty gas systems and underground leaks; and testing for arcing and 

corona in electrical apparatus (Naik 2009).  

In the medical setting, similar technologies have been developed to monitor patients with 

chronic disease such as asthma and chronic obstructive pulmonary disease (COPD). Specifically, 

to evaluate the adherence to inhaler medication, which involves doses being taken in a consistent 

schedule and with a proper method. The inhaler compliance assessment (INCA) device was 

developed as an approach to evaluate inhaler adherence. This device is attached to a widely-used 

variety of inhalers, as shown in Fig. 2 (right). When the patient opens the mouthpiece to take a 
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dose, the INCA device takes an audio recording with a timestamp. An example of a typical audio 

sample after applying the fast Fourier transform (FFT) algorithm to extract its frequency features 

is shown in Fig. 2 (left). One month of typical inhaler use yields 60 audio files corresponding to 

60 doses of medication. Analyzing this data set takes an experienced pulmonary clinician an 

average of 30 minutes. This type of labor intensive analysis is not feasible with a large group of 

patients. Thus, a computer algorithm has been designed to analyze audio data sets and provide an 

adherence score based on dose schedule and the pattern of blister, exhalation, and inhalation events 

(Holmes, et al. 2014). This sort of study provides useful information for clinicians to understand 

why a specific inhaler is not effective and propose methods to enhance the patient’s adherence 

(Sulaiman, et al. 2017). 

Although the potential for applications is boundless, there has been little prior work studying 

the implementation of audio signal processing techniques specifically in the area of construction 

engineering and management. The motivation behind an audio based activity recognition 

framework for construction operations lies in the inherent limitations of the existing techniques 

for detailed assessment of construction activities. These limitations have hindered the successful 

adoption of these techniques and hence the industry still relies heavily on the experience of project 

managers on the jobsite to perform such assessments. In comparison with other active and passive 

activity recognition methods, working with audio signals provides the following advantages: 

• Most active sensors (GPS, accelerometers, etc.) need to be directly mounted on the 

equipment. In addition, for each machine, at least one sensor is required. As explained in this 

work, this is not a limitation for an audio-based activity recognition method. Microphones 
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can be installed in various locations at the jobsite and one microphone is usually able to cover 

the activities of many machines. 

• Computer vision methods are very sensitive to environmental factors such as lighting 

conditions and occlusions. In addition, the limited field of view of cameras is another major 

drawback for computer vision methods. Microphones and audio signals are more resilient 

against the above-mentioned limitations. 

• The sound produced by each piece of equipment is independent of the operator. As the result, 

an operator can perform an activity in a variety of ways. An action recognition system based 

on location sensors and/or computer vision techniques would need to take these different 

scenarios into account, while an audio analysis always yields the same result. 

• Compared to video data, audio files have lower data rates and are therefore computationally 

more efficient. 

Choosing the optimal hardware setting (type and location of microphones) and software 

(selecting proper algorithms and tuning algorithmic parameters) is a crucial stage for acoustical 

modeling of real-world construction jobsites.  

HARDWARE SETTING: DIFFERENT TYPES OF MICROPHONES 

The primary devices used for audio recording are microphones. A microphone generally 

contains a diaphragm, either surface or moving, designed to capture electroacoustic waves and 

generate electronic signals. Typical microphone classifications involve distinguishing either by 

their pickup pattern or by the type of transducer they employ. 

Per Ballou (2015), pickup pattern refers to how the microphone discriminates among 

different directions of the incoming sound. The most common microphone types are 
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omnidirectional, bidirectional, and unidirectional or cardioid microphones. In an omnidirectional 

microphone, the pickup pattern is equal in all directions. Omnidirectional microphones are 

particularly useful when it is necessary to capture all audio sources in an environment. In a 

bidirectional microphone, the pickup pattern is equal in two opposite directions and negligible at 

90° from these two directions. Bidirectional microphones are particularly useful when it is 

necessary to capture the conversations of two speakers positioned face to face.  In a unidirectional 

microphone, the pickup pattern has a cardioid shape facing in just one direction. Of all three, 

unidirectional microphones are the most widely used because they allow the user to focus on a 

specific source of interest. Pickup pattern is a key factor for acoustical modeling of construction 

jobsites since, in a multifaceted jobsite, several pieces of construction equipment might work 

simultaneously, generating sound from multiple locations and directions. More details of the 

aforementioned microphones plus some variations of these are provided in Fig. 3 (Ballou 2015).  

A transducer is a device that converts a physical stimulus to an electrical signal output. 

Transducers can be carbon, crystal, and ceramic microphones, condenser microphones, dynamic 

microphones, and electret condenser microphones. Microphone selection by type of transducer is 

another key consideration in a construction jobsite. Transducers must be robust enough to 

withstand inclement weather and other contingencies while maintaining stable audio signal 

recording characteristics. 

For this research three microphones of varying types have been selected (Fig. 4): 1) a Zoom 

H1 digital handy recorder, an off-the-shelf microphone; 2) a Korg CM-200 clip-on contact 

microphone; and 3) an xCore-200 multichannel microphone array. Condenser microphones and a 

variant of these called MEMS microphones are the type of microphone built into the Zoom H1 
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handy recorder and the XMOS microphone array, respectively. Per Yamaha (2016), condenser 

microphones have good sensitivity to all frequencies, but are highly susceptible to structural 

vibration and humidity. Crystal and ceramic microphones are the type of microphone built into the 

Korg contact microphones (Korg 2016). Their name comes from the fact that these devices use 

piezoelectric crystals such as Rochelle salt, tourmaline, barium titanate, and quartz to convert 

pressure differences from the environment into a voltage output. Due to this pressure response 

characteristic, crystal microphones can be built to pick up vibrations from contact with objects, as 

opposed to common microphones that pick-up air-carried sound waves.  

Contact microphones are built with a unidirectional, piezoelectric transducer, which is 

designed to be less susceptible to air-carried sound waves and more susceptible to surface-borne 

sound waves. The Korg CM-200 microphone, selected for data collection in this research, is 

commonly used in applications that involve capturing sound from a particular musical instrument 

(e.g., brass instrument, guitar, violin, and ukulele) when recording or practicing with an entire 

music band (Korg 2016).  Contact microphones have the potential to be attached to heavy 

machinery while not being overly susceptible to the vibrations of the machine itself, unlike 

condenser microphones. 

A microphone array is composed of at least two microphones working in tandem arranged 

in a linear, rectangular, or circular pattern. These microphones are usually omnidirectional; 

however, some microphone arrays are built using directional microphones or a combination of 

omnidirectional and directional microphones. Brandstein and Ward  (2001) compiled over 20 years 

of research in array-based microphone technology, which resulted in a thorough reference for 

immediate applicability of array technology in current systems and in improvement of existing 
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devices. The applications for array-based microphones recorded in this compilation are based on 

beamforming techniques and include speech enhancement, speech recognition, source 

localization, noise reduction, echo cancellation, and separation of acoustic signals. Source 

localization and separation of acoustic signals have the potential to be very useful tools for locating 

heavy equipment and separating audio signals from other machinery working simultaneously in 

cluttered jobsites. 

The XMOS xCORE-200 microphone array board, selected for data collection in this 

research, is a hardware and reference software platform equipped with seven omnidirectional 

MEMS microphones with pulse density modulation (PDM) output (one microphone is placed at 

the center at the board and the remaining six microphones are distributed equidistantly around the 

board edge, as shown in Fig. 4), a digital-analog converter (DAC), a processor with sixteen 32-bit 

logical cores, on-board low-jitter clock sources for multiple clocking options, four configurable 

buttons, 13 LED indicators, a USB 2.0 port, a RJ45 Ethernet port, a 3.5 mm audio jack, and other 

components. This particular microphone array board and its reference developer firmware are 

targeted, but are not strictly limited to, Voice User Interface (VUI) applications (XMOS Ltd. 

2016).   

RESEARCH METHODOLOGY: AUDIO-BASED ACTIVITY RECOGNITION OF 

CONSTRUCTION HEAVY EQUIPMENT 

To determine the software and hardware requirements for acoustical modeling of 

construction jobsites, the authors have developed an audio-based model for activity recognition of 

construction heavy equipment (Fig. 5). The five core components will be briefly described below. 
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Hardware settings for data collection will be discussed thoroughly in the next section. More 

detailed information about the implemented system can be found at (Cheng, et al. 2016). 

Denoising 

Audio samples of heavy equipment mixed are almost certainly contaminated with noise from 

other sound sources found in a job site. To reduce the effect of this noise on later processing tasks, 

it is necessary to filter out as much noise as possible prior to subsequent processing. However, 

noise filtering can also degrade the desired (equipment) signal and so the filtering must be balanced 

to reduce unwanted noise effectively while minimizing the distortion of the sound patterns of 

interest. Additionally, noise filtering must remain effective under the assumption that noise sources 

at a job site are not necessarily constant since workers and equipment perform short tasks in an 

intermittent manner. Thus, a denoising algorithm for non-stationary environments developed by 

Rangachari and Loizou (2006) was selected for implementation using MATLAB. This algorithm 

uses a noise estimation method for non-stationary environments that rapidly adapts depending on 

relative level of noise versus signal of interest.  

Sound Source Detection (Steered Response Power and Beamforming) 

The case of dealing with multiple machines operating simultaneously at a jobsite is more 

challenging due to overlap between the sounds patterns generated by various machines. As a result, 

it is necessary to separate generated sound patterns by each individual machine first. For multiple 

machine recordings, sounds from different machines come from different directions. A robust 

source detection and activity recognition algorithm must respond to sound from a specific direction 

and block most of the noise from outside the direction of interest.  To achieve this goal, the first 
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step is to estimate the arrival direction for the sounds of interest. Direction of arrival for different 

machines is estimated using SRP (Steered Response Power). The idea of SRP is that the location 

of the signal source radiates more energy than all other locations (Dmochowski, Benesty and Affes 

2007). Thus, we can identify directions of arrival by scanning over all feasible angles and choosing 

the one with the largest value power. In practice, we scan through a hemisphere and find the 

direction with largest power. After finding the range, elevation and azimuth value from SRP, 

beamforming is used to isolate the signal from the desired direction. Beamforming consists of a 

spatial filter that uses the inputs from multiple microphones to isolate (as much as possible) signals 

arriving from a particular direction (Gannot, Burshtein and Weinstein 2001, Johnson and Dudgeon 

1993). The illustration of ideal direction detection result is shown in Fig.6. The top figure shows 

the positions for microphones and sound sources, and the bottom figure shows the directions 

detected by the SRP technique. In our pipeline, we choose delay-and-sum beamformer since it is 

the simplest and still highly effective. 

Short-Time Fourier Transform (STFT) 

Once enhanced and isolated, each audio signal is then converted into a time-frequency 

domain representation using the STFT. This technique consists of dividing a temporal signal into 

short segments and computing the Fourier transform for each segment; thereby extracting 

sinusoidal frequency, magnitude, and phase content of each segment and representing these 

features as they change over time. MATLAB was used for STFT implementation using a Hanning 

widow size of 512, a 1024-point discrete Fourier transform, and a 50% overlap. For the subsequent 

processing, only the magnitude content is retained. 
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Support Vector Machines (SVMs)  

To identify activities being performed by construction equipment within an audio recording, 

an SVM classifier was trained to recognize each piece of equipment while performing major 

activities (class 1) and minor activities (class 2). The LIBSVM MATLAB package was used for 

this task (Chang and Lin 2011). Four audio segments of the construction equipment performing a 

major activity are used to train class 1, and four audio segments of the construction equipment 

performing a minor activity were used to train class 2. Each of these segments was selected to be 

2 to 6 seconds long and included only the STFT magnitude.  To guarantee correct SVM parameter 

selection, ten-fold cross validation was used. It is well known that the performance of the SVM 

algorithm highly depends on the selected kernel function (Rashidi, Sigari, et al. 2016). For this 

research, the linear and radial basis kernel functions have been selected, and experiments have 

been performed with both.  

Window Filtering  

Once an SVM classifier is generated for a specific construction equipment, it can be used 

for classification of the rest of the audio file. Nonetheless, direct implementation would potentially 

yield an output with predicted activities changing erratically from one time-frequency bin to the 

next. Therefore, a window filtering algorithm was implemented to smooth out the classified output. 

The window filtering parameters are a small window size, a large window size, and a threshold. 

Initially, if the SVM labels indicate that the percentage for a certain activity is greater than the 

threshold throughout the small window, the whole small window is labeled as that activity. Then, 

this is repeated using the small window labels for the large window size. The size of the window 
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will vary in different cases, but in general the small window can be set as a quarter second and the 

large window can be a second or two seconds. 

EXPERIMENTAL SETUP: Audio-Based Activity Recognition of Single Machines  

A selection of various construction heavy equipment has been chosen to help assess how 

well the audio-based activity analysis system performs under different hardware and software 

settings. Using four recording devices, audio data from heavy machinery performing routine 

activities was collected. The selected microphones were two off-the-shelf Zoom H1 handy 

recorders (regular microphone), one on a tripod located on-site and one on-board the machine; one 

XMOS xCORE-200 USB microphone array connected to a laptop; and one KORG CM-200 

contact microphone connected to a flat surface in the cabin of the equipment. The XMOS 

microphone array was interfaced to a Windows PC using the manufacturer’s USB Audio Class 2.0 

Evaluation Driver for Windows and multichannel audio was recorded through Audacity, an open 

source program for recording and processing audio. The setup process for data collection is 

depicted in Fig. 7.  

EXPERIMENTAL SETUP: Audio-Based Activity Recognition of Multiple Machines 

Working Simultaneously on a Jobsite 

The experimental setup for the single machine case is almost the same as the multiple 

machine case. The only difference is that we only use the XMOS xCORE-200 USB microphone 

array and regular on-site microphone in the multiple machine cases. Also, we record each machine 

separately to be used as our training library in the multiple machine cases. Recordings from the 

microphone array can provide us with phase information, which can help us track the location of 
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sound sources as described above. With the spatial information, the proposed activity recognition 

framework can work better in the multiple machine cases. 

In addition to audio data recording, a video sample was taken using a digital video camera 

to serve as a reference for manual labeling of major and minor activities. Examples of major 

activities include digging, loading, dumping, and crushing rock, while examples of minor activities 

include swinging, maneuvering, and extending arm. Once the devices were in place and recording, 

a loud sound was produced with an air horn. This signal was to be used as a synchronization point 

for the data. Manual labels served as ground truth data to assess the activity recognition accuracy. 

The results for one sample machine are depicted in Fig. 8. The machine, an Ingersoll Rand 

SD25 compactor, was recorded using a Zoom H1 digital handy recorder placed relatively close to 

the machine on the jobsite. The presented results are based on using an SVM with a linear kernel. 

The top part of the figure presents the normalized frequency for the machine’s audio signal, while 

the middle and bottom plots show the actual (black) versus predicted (blue) activity labels and 

over the audio recording time period. As indicated in these figures, there is an excellent correlation 

between the actual and predicted results generated for the Ingersoll Rand compactor. 

EXPERIMENTAL SETUP: Comparison between Different Frequency Feature Extraction 

Techniques 

Selecting optimum frequency feature extraction method is an important decision for 

optimizing the performance of the proposed audio-based activity recognition package. In this 

study, two common feature extraction techniques, the short-time Fourier transform (STFT) and 

the continuous wavelet transform (CWT) have been selected and compared. STFT is based on 

dividing a long-time signal into short segments and computing the Fourier transform for each 
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segment. CWT is a derivation of the Fourier transform that was primary designed to locate 

frequency features in time or space. The Fourier transform is a powerful tool for frequency 

analysis; however, it does not characterize rapid frequency changes efficiently because it 

represents data as a sum of sine waves, which extend to infinity. A wavelet is a rapidly-decaying, 

wave-like oscillation that has zero mean. More detailed information regarding each feature 

extraction method could be found at relevant references such as Mathwoks, Inc. report, 2017.  

To conduct the comparison study between STFT and CWT, both techniques were 

implemented using recordings taken at local construction jobsites for various types of equipment. 

Two configurations for CWT (8 octaves/ 32 scales per octave; and 10 octaves and 24 scales per 

octave) and one configuration for STFT (1024 frequency points, 512-sample window, and 256 

overlapped samples) have been employed in this research.  

 

RESULTS AND DISCUSSION 

Tables 1 – 5 and Figures 9-11 summarize comparison results for several construction 

equipment under different hardware and software configurations. Through careful analysis of these 

results, we arrive at the following conclusions: 

• For on-board microphone placement, contact microphones generate slightly more accurate 

results and, thus, are the better choice (Table 1).  

• A comparison for the current case study results shows that regular microphones placed on 

the construction site yield better accuracies than contact microphones attached to flat surfaces 

in the cabin. One clear reason for this phenomenon is that contact microphones on-board are 

affected by engine noise and the vibrations; nonetheless, further investigations using several 
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other data sets and under different jobsite conditions might be required to fully substantiate 

this conclusion (Tables 2 and 3).  

• As shown in Fig. 9, results show that the radial basis function kernel outperforms the linear 

kernel in most cases, particularly when it comes to recognizing the major activities.  

• No significant differences can be found between regular microphones and microphone arrays 

when it comes to recognizing the activities of single machines through microphones placed 

on-site. This is due to there being only one source of audio, and therefore only one direction 

of incoming audio. It is suggested that a noticeable difference between a regular microphone 

and a microphone array will be seen in the recording of multiple machines, and the multiple 

directions of generated audio from said machines. Microphone arrays will become useful to 

detect multiple audio directions from multiple audio sources.  

• In Table 4, we can find in the multiple machine case, microphone array can provide us with 

better recognition results compared to regular on-site microphone. The reason is that with 

direction detection step, we can eliminate most of the noise outside the direction of interest. 

When using the microphone array, we improve the performance of activity recognition by 

using recordings that only contain one machine sound as our training library. After the 

direction detection step, we used the trained library to perform the activity recognition in the 

mixed recording. However, when using a single on-site microphone, we can only do the 

activity recognition on the mixed recording since we are lacking spatial information.  

• In general, it can be observed that CWT scalograms yield a better time-frequency magnitude 

representation than STFT spectrograms. Additionally, it has been illustrated that using a 

smaller number of octaves with higher resolution within the octaves is preferable when lower-
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frequency features are not of interest. Using a CWT with 8 octaves outperformed using a 

CWT 10 with octaves on processing time and labeling accuracy. 

SUMMARY AND CONCLUSION 

This work provides an innovative audio-based solution for activity analysis of construction 

heavy equipment and acoustical modeling of construction jobsites. An audio-based activity 

recognition model has been developed and tested under various hardware and software settings for 

the case involving single machines. The methods of the experiment apply the three types of 

microphones discussed earlier (off-the-shelf, contact, and microphone arrays) and two placement 

settings (on-board vs. on-site). The comparison results have been presented in the previous sections 

of this paper. Additionally, the results were also processed with two major SVM kernel types 

(linear and RBF) to determine which kernel yielded the best results. The RBF kernel performed 

better in most cases. As an extension of the current research, plans for future research include 

expanding into the following items: 

• Implementing and testing the audio-based model with more diverse data sets and conditions 

• Determining what hardware and software settings would be required to implement this 

system on a jobsite with multiple machines working simultaneously 

• Developing more robust algorithms that would recognize more detailed tasks performed by 

heavy equipment and machinery. That is, separating major and minor activities into sub-

activities. 
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TABLE 1. Comparison between contact and regular microphones (on-board/ SVM using the RBF 

kernel). 

Machine 

Contact Microphone Regular microphone 

Major activity Minor activity Major activity Minor activity 

JD50D Compact 

Backhoe 
72.08% 74.02% 71.14% 82.78% 

Ingersoll Rand 

Compactor 
80.34% 7.83% 80.07% 1.98% 

CAT 320E Excavator 80.78% 38.26% 71.20% 29.71% 

Komatsu PC200 

Excavator 
71.05% 48.56% 70.16% 55.59% 

JD 700J Dozer 76.16% 64.46% 78.79% 60.15% 

Hitachi 50U Excavator 49.58% 57.96% 53.15% 54.17% 

Concrete Mixer 2 68.79% 65.68% 77.16% 70.23% 

TABLE 2. Comparison between contact (on-board) and regular (on-site) microphones. 

Machine 

Contact Microphone (on-board) Regular microphone (on-site) 

Major activity Minor activity 
Major 

activity 
Minor activity 

CAT 320D Backhoe Excavator 80.78% 38.26% 81.09% 71.48% 

JD 333E Compact Loader 73.42% 95.68% 86.54% 90.11% 

JD50D Compact Backhoe 72.08% 74.02% 86.65% 57.74% 

Ingersoll Rand Compactor 80.34% 7.83% 81.58% 32.03% 

CAT 320E Excavator 80.78% 38.26% 81.09% 71.48% 
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Komatsu PC200 Excavator 71.05% 48.56% 82.17% 67.89% 

JD 700J Dozer 76.16% 64.46% 84.69% 72.45% 

Concrete Mixer 2 68.79% 65.68% 83.23% 61.59% 

TABLE 3. Comparison between on-site and on-board regular microphones. 

Machine 
On-site On-board 

Major activity Minor activity Major activity Minor activity 

JD50D Compact 

Backhoe 
86.65% 57.74% 71.14% 82.78% 

Ingersoll Rand 

Compactor 
81.58% 32.03% 80.07% 1.98% 

JD 333E Compact 

Loader 
86.54% 90.11% 80.67% 81.47% 

CAT 320E Excavator 81.09% 71.48% 71.20% 29.71% 

Komatsu PC200 

Excavator 
82.17% 67.89% 

70.16% 55.59% 

JD 700J Dozer 84.69% 72.45% 78.79% 60.15% 

Hitachi 50U Excavator 79.89% 55.97% 53.15% 54.17% 

Concrete Mixer 2 83.23% 61.59% 77.16% 70.23% 

TABLE 4. Comparison between array and on-site regular microphones on multiple machine 

recordings. 

Multiple machine cases 

Microphone Array On-site regular microphone 

Major 

activity 

Minor 

activity 

Major 

activity 

Minor 

activity 

Bobcat Loader and 

Bobcat Excavator 

Bobcat Loader 72.37% 52.74% 65.34% 62.78% 

Bobcat Excavator 74.29% 60.17% 68.16% 51.17% 

Bomag Compactor 

and JD 544K 

Loader 

Bomag Compactor 81.12% 49.07% 70.22% 57.88% 

JD 544K Loader 76.14% 55.47% 59.74% 41.81% 

CAT Bulldozer 80.42% 81.33% 71.54% 65.14% 
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CAT Bulldozer and 

CAT CS44 

Compactor 

CAT CS44 

Compactor 
79.08% 77.29% 67.44% 50.08% 

CAT C5K 

Bulldozer and CAT 

305E Excavator 

CAT C5K 

Bulldozer 
78.57% 61.90% 57.82% 39.97% 

CAT 305E 

Excavator 
77.69% 64.18% 62.26% 47.64% 

 

TABLE 5. Comparison between CWT 10/24 vs. STFT true positive classification accuracy. 

 

 CWT 10/24 STFT 

 Act 1 Act 2 Act 1 Act 2 

JD 670G 91.76% 52.46% 79.31% 79.28% 

JCB 3CX 82.06% 60.73% 91.44% 54.62% 

Komatsu PC200 69.45% 68.34% 62.18% 72.75% 
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Fig. 1. Schematic for computer-based feature identification. 
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Fig. 2. Spectrogram of audio signal caught with INCA device showing blister, exhalation, and 

inhalation events (left); INCA device attached to inhaler (right) – (Holmes, et al. 2014). 

 

 

 

 

 

 

 

 

Microphone Omnidirectional Bidirectional Directional Supercardioid Hypercardioid 

Directional response 

characteristics 

     

Voltage output 𝐸 = 𝐸𝑜 𝐸 = 𝐸𝑜 cos 𝜃 𝐸 =
𝐸𝑜

2
(1 + cos 𝜃) 𝐸 =

𝐸𝑜

2
[(√3 − 1) + (3√3 ) cos 𝜃)] 𝐸 =

𝐸𝑜

4
(1 + 3 cos 𝜃) 

Random energy 

efficiency (%) 
100 33 33 27 25 

Front response

Back response
 1 1 ∞ 3.8 2 

Front random response

Total random response
 0.5 0.5 0.67 0.93 0.87 

Front random response

Back random response
 1 1 7 14 7 

Equivalent distance 1 1.7 1.7 1.9 2 
Pickup angle (2θ) for 

3 dB attenuation 
-  90⁰ 130⁰ 116⁰ 100⁰ 

Pickup angle (2θ) for 

6 dB attenuation 
-  120⁰ 180⁰ 156⁰ 140⁰ 

 

Fig. 3. Performance characteristics of several microphones. 
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Fig. 4. Different types of microphones used in the project: Zoom H1 digital handy recorder (left) 

(Zoom Corporation 2016); Korg CM-200 clip-on contact microphone attached to construction 

equipment (center); xCORE-200 microphone array evaluation board – top view – (right) (XMOS 

Ltd. 2016). 
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Fig. 5. The audio-based model for activity analysis of construction heavy equipment. 
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Fig. 6. Direction Detection Steps. The positions for microphone array and sound sources (top); 

Two directions detected by steered response power method (bottom). 

 

 

 

 

 

 

 

 

 
Fig. 7. Setup process for audio collections using microphone array and off-the-shelf microphone 

on-site (left), and contact microphone and off-the shelf microphone on-board (middle); 

Simultaneous video recording for generating the ground truth data (right). 
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Fig. 8. Results for Ingersoll Rand SD25 Compactor. 
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Fig. 9. Summary of the results for implementing RBF and Linear Kernels for activity 

recognitions of machines (major activities). 

 

 

 

Fig. 10. Sample of comparison results between CWT (10/24) vs. STFT spectrograms- 

Machine: JCB 3CX 
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Fig. 11. Labeling comparison between CWT (10/24) vs. STFT spectrograms- Machine: 

JCB 3CX 

 


