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Abstract  

Action recognition and tracking of construction 
heavy equipment is the first step for benchmarking 
and analyzing the performance of individual 
machines and evaluating the productivity of a jobsite 
as a whole. Aside from direct observations, the 
current approaches for automatically recognizing 
and tracking various actions of construction heavy 
equipment includes: 1) using active sensors such as 
RFID tags, GPS and accelerometers or 2) computer 
vision-based activity analysis (processing images or 
videos).  

In this paper, we present a novel audio-based 
approach for activity recognition of construction 
heavy equipment. Construction machines often 
produce distinct sound patterns while performing 
certain activities and it is possible to extract useful 
information by recording and processing those audio 
files at construction jobsites. The proposed audio-
based framework begins with recording generated 
sound patterns of construction equipment using 
commercially available audio recorders. The 
recorded signal is then fed into a signal enhancement 
algorithm to reduce background noise commonly 
found at construction jobsites. The modified audio 
signal is then converted into a time-frequency 
representation using the Short-Time Fourier 
Transform (STFT). A Support Vector Machine (SVM) 
is then trained to differentiate between the acoustic 
patterns of the various activities of each machine. The 
processed audio signal is then finally divided and 

classified into various activities using a window 
filtering approach and by setting proper thresholds. 
We implemented the presented audio-based system at 
several jobsites as case studies and the results 
illustrate the efficiency of the system in automatically 
recognizing various actions of construction heavy 
equipment.   
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1 Introduction 

According to the Lean Construction Institute, 
productive time in the construction industry is only 43% 
while it is 88% in manufacturing [1]. For many years, the 
construction industry has suffered from the lack of real-
time performance monitoring, holistic project 
management, labor efficiency, and waste prevention 
tools. This has led to cost overruns in almost 90% of 
construction projects with an average of 28% higher than 
forecast costs [2]. For these reasons, “effective 
monitoring and feedback process” has been identified as 
the third most important attribute (after scheduling 
deficiencies and construction methods) that affects cost 
escalations within construction projects [3].  

Action recognition and tracking of construction 
heavy equipment and personnel is the first step for 
benchmarking, analyzing, and evaluating the 
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productivity of a construction jobsite. A number of 
monitoring techniques, such as direct observations, 
activity sampling, computer vision-based activity 
analysis (images or videos), etc., have been proposed to 
address this problem, but these proposals are either too 
inefficient to be practically useful or have other 
limitations that have limited their adoption by 
practitioners; hence, the construction industry is still 
overwhelmed by delays and suffers from frequent cost 
and time overruns. 

To address these existing issues, we propose a novel 
audio-based activity recognition and performance 
monitoring system for construction heavy equipment. 
Construction heavy equipment often generates distinct 
acoustic patterns while performing various operations 
and it is feasible to extract useful information by 
processing the recorded audio data. In addition, a 
monitoring system based on processing audio data is 
computationally efficient, non-intrusive, and inexpensive.  

The rest of the paper is organized as follows: Section 
2 briefly reviews the state of practice and research for 
activity recognition and performance monitoring of 
construction equipment. Details of the proposed audio-
based performance monitoring system are presented in 
Section 3. Necessary experimental setup for evaluating 
the proposed system and the obtained results are 
summarized and discussed in Section 4. Finally, Section 
5 concludes the paper by interpreting the results and 
providing recommendations for future work. 

2 State of Knowledge: Activity 
Recognition of Construction Equipment 

The state-of-practice is based on manual data 
collection and analysis (watching the operation directly 
or through real-time video streams). It involves manually 
filling out timesheets for different equipment, collecting 
paper documentation like maintenance notes, measuring 
the amount of accomplished work, etc. The assessment is 
generally done through the work sampling concept. The 
concept relies on the principle that the percentage of 
equipment time spent on value-adding activities is an 
indirect measure of productivity. The objective is to 
approximate what is taking place in the field as 
accurately as possible. An observer records activities at 
regular intervals and then categorizes them to assess 
where the time is utilized [4]. This translates to generic 
and infrequent control activities that are performed off-
line and consequently do not enable timely corrective 
measures to mitigate damage to an ongoing project. The 
performance is often demonstrated using a combination 
of graphical tools that represent the operation and the 
resources involved; for example, equipment balance 
charts, process charts, and flow diagrams [5].  

A substantial need for real-time, automated, and 
dynamic control systems for on-site equipment has been 
recognized in both the industry and academia [6-10]. 
Such systems which provide relevant information to the 
user by exploiting context are called context aware 
systems in robotics and telecommunications. 

2.1. Activity Recognition of Construction 
Equipment Using Active Sensors 

Location tracking of heavy equipment has been one 
the first attempts for automating the performance 
monitoring of construction operations.  

The problem of location tracking of construction 
machines can be currently addressed by several active 
spatial remote sensing technologies such as GPS, RFID, 
and Ultra-Wideband (UWB) sensors. They work based 
on the time-of-arrival principle; specifically, that the 
propagation time of a signal can be translated directly 
into distance from the source to the receiver [11]. These 
sensors are attached to equipment or workers and provide 
their 3D location in real-time. However, they are not 
capable of providing any information regarding the type 
of the ongoing actions. This is addressed in two ways: 1) 
human observation and work sampling; and 2) using 
extra sensors such as laser scanners, depth cameras 
(RGB-D), and a system of RGB cameras that are able to 
provide a 3D point cloud of the equipment (Fig. 4). This 
makes the problem more complex. The choice of a 
particular sensor depends on several factors including the 
application type, line-of-sight between objects and 
sensors, required signal strength, calibration 
requirements, permitted bandwidth, implementation 
costs, and environmental conditions [11].  

Besides location tracking of heavy equipment, certain 
types of active sensors might be able to provide useful 
information about the performed operations. For example, 
in [12] Ahn et al. proposed an activity recognition system 
based on using an accelerometer. This approach is 
particularly efficient for earthmoving machines; however 
it is not general enough to cover a vast range of different 
types of construction equipment.   

2.2. Computer Vision-Based Activity 
Recognition of Construction Equipment 

Video-based techniques present an alternative and 
appealing solution for the aforementioned active 
positioning sensors. They are passive (i.e., do not 
emanate any sorts of energy and only use the natural light 
in the environment; [13-15]) and capable of providing 
semi-real-time information at relatively low-cost. A 
single inexpensive camera could be used to recognize 
actions of multiple pieces of equipment and minimize the 
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need for sophisticated on-board sensors for each piece of 
equipment [16]. The recorded videos also offer a reliable 
documentation for future reviews. The entire process 
commonly consists of 4 steps, as illustrated in Figure 1: 
equipment recognition, equipment tracking, action 
recognition, and estimation of activity performance 
indicators. 

 

 

Figure 1. Overall flowchart for computer vision-
based performance monitoring of construction 
equipment. 

Equipment recognition, as a subset of object 
recognition, is a well-studied but challenging task due to 
several difficulties that arise from variations in 
illumination, viewpoint, occlusion, scale, articulated 
shapes, background clutter, and different equipment 
color [17]. The existing object recognition methods can 
be classified into three categories: recognition by parts, 
appearance-based recognition, and feature-based 
methods. It has been shown that the feature-based 
approach can achieve the desired performances in 
complex scenarios by quantizing the descriptors of 
positive and negative samples in order to be used for 
training a classifier. 

Precise localization and tracking of multiple pieces of 
equipment in video streams is required for successful 
action recognition. Tracking the 3D trajectory of the 
equipment allows one to limit the search space to certain 
regions in video streams and hence minimizes the effect 
of noise caused by lateral movements of the camera and 
dynamic foreground. Contour-based tracking, kernel-
based tracking, and feature matching are proposed in the 
literature for this purpose. Several comparative studies 
have indicated that the Mean-Shift algorithm 

outperforms other methods in visually noisy construction 
environment [18, 19] while the addition of the Kalman 
filter can further stabilize its performance. 

Action recognition consists of identifying the various 
actions performed by a piece of equipment over time and 
is the most challenging step for video-based equipment 
performance monitoring [16]. A more precise 
terminology has been proposed by Bobick [20] that 
differentiates between movements, activities, and actions. 
In this terminology, for example, the action of digging a 
foundation by an excavator includes different activities 
like digging, swinging, or dumping. Each activity 
consists of a sequence of different movements like 
raising the arm or swinging the bucket. Several video-
based equipment and worker action recognition studies 
have been performed in the construction community. 
Rezazadeh and McCabe [6] introduced a logical 
framework that combines object recognition, tracking, 
and rational events to recognize dirt loading to a dump 
truck by a hydraulic excavator. Kim and Caldas [21] 
presented an action recognition method for observing 
construction workers using interactions between actions 
and related objects which can be used to measure work 
rates for labor productivity monitoring. Golparvar-Fard 
et al. [16] proposed a method that initially represents a 
video stream as a collection of spatio-temporal visual 
features and then automatically learns the distributions of 
these features and action categories using a multi-class 
support vector machine classifier. More recently, Bugler 
et al. [22] combined photogrammetry and video analysis 
for tracking the progress of earthwork processes. They 
used photogrammetry to determine the volume of the 
excavated soil in regular intervals while the video 
analysis was used for generating statistical data regarding 
the construction activities. 

The continuous recording of the data from previous 
steps enables the documentation of the various 
equipment actions over a period of time. A statistical 
analysis of the data would result in activity performance 
indicators such as active and idle time, cost, quality, 
productivity, ratio of completed work, etc. These 
indicators provide proactive resource monitoring 
capabilities and enable project managers to take 
corrective actions on performance deviations. 

Despite the advantages that video-based performance 
monitoring provides over the techniques that use active 
sensing, the vision-based techniques still need to address 
significant technical and practical challenges. The first is 
the necessity for an appropriate level of illumination in 
the scene (neither dark nor direct sunlight). At the very 
least, this makes it extremely challenging to use video 
streams for performance monitoring of the tasks that are 
performed after sunset, which is not negligible especially 
in urban projects. In the absence of significant artificial 
lighting, a video-based approach would be nearly 
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impossible. Another challenge is posed by the fact that 
cameras have a limited field of view and require a clear 
line-of-sight between the camera and any piece of 
equipment that is to be characterized. A related challenge 
is posed by the fact that construction sites are generally 
crowded with a large number of workers and equipment. 
Such congestion creates noisy and occluded areas in 
video streams which eventually disrupts accurate and 
automatic recognition of equipment actions. An 
additional key challenge is that the required video 
processing techniques are generally quite 
computationally expensive, which hinders their real-time 
performance and scalability. The last, and perhaps the 
most important, challenge is privacy, as not everyone is 
willing to be permanently monitored and recorded by 
cameras in a jobsite. 

2.3. Gaps in Knowledge: Audio vs. Video 

 Audio processing provides four advantages over the 
location-based and/or computer vision-based techniques: 

  
1) Some activities or actions are easier to recognize 

with sound than with other sensors. As a simple 
example, consider an excavator that is 
excavating a pit. In general, this action is not 
associated with a single characteristic gesture. 
Rather, it involves a series of movements such as 
digging, rotating, swinging, dumping, etc. that 
could be performed in a variety of ways and 
sequences (e.g., swinging in different directions 
and angles). This is extremely difficult to 
recognize via computer vision-based systems.  

2) The sound produced by each piece of equipment 
is independent of the operator. An operator can 
perform an activity in a variety of ways. An 
action recognition system based on location 
sensors needs to take this into account, while an 
audio analysis always yields the same result.  

3) The limited field of view of cameras used in 
vision-based action recognition methods 
constraints their range of operation from a single 
spot. A network of cameras is therefore needed 
to be placed in a circular pattern to cover all the 
angles in a jobsite (Figure 2). This is not a 
limitation for audio recording because a recorder 
can operate in 360 degrees. Moreover, because 
the sound produced by each piece of equipment 
can be heard even in the absence of a direct line-
of-sight, an audio-based approach is less 
sensitive to occlusions. 

 

 

Figure 2. Camera layout in computer vision-based 
equipment action recognition [16]. 

4) The data rates that need to be analyzed in each 
scenario are different for every sensor modality. 
Table 1 demonstrates the order of magnitude for 
data rates in different scenarios. Even though the 
data rates could differ if a specific application is 
considered, it is obvious that processing audio 
data is computationally less demanding than 
video data. 

Table 1. Approximate data rates for different sensor 
modalities 

Input 
Type 

Location 
(NMEA 
format) 

Video Sound 

# Sensors 10 1 1 
Sampling 

Rate 
12 Hz 4608 kHz 10 kHz 

Resolution 800 bit 8 bit 8 bit 
Data Rate 12 kB/s 4608 kB/s 10 kB/s 

3 Proposed Methodology: Audio-Based 
Activity Recognition of Heavy 
Equipment 

To address the challenges associated with active sensors 
and computer vision-based approaches for activity 
recognition of construction equipment, we present an 
innovative activity recognition framework. This 
framework is based on processing audio signals 
generated at construction jobsites. The overall procedure 
is illustrated in Figure 3.   
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Figure 3. Overall framework for the proposed 
audio-based activity recognition algorithm. 

While performing various tasks, the generated 
acoustic patterns of construction equipment can be 
recorded using commercially available microphones 
(Figure 4). We note that the current study is based on 
recognizing activities of a single machine and the more 
general and realistic setting (assuming the entire jobsite 
as a whole: multiple machines plus multiple microphones) 
will be considered as part of the future research plans. 

 

Figure 4. An audio recorder (top) and placing the 
recorder at a jobsite (bottom). 

As the next step, each audio recording will go through 

a number of processing stages as explained below. 

3.1.  Denoising 

The recorded audio is assumed to contain the signal 
of interest along with environmental and other noise 
sources. We apply a signal enhancement algorithm 
developed by Rangachari & Loizou [24] because it has 
proven to be both efficient and effective. A key aspect of 
this algorithm is that it can perform noise-estimation in 
highly non-stationary noise environments such as what 
might be encountered at a construction job site. An 
estimate of the noise is continuously updated in every 
frame using time–frequency smoothing factors computed 
based on signal-presence probability in each frequency 
bin of the noisy recording spectrum. More details about 
this algorithm can be found in [24]. 

3.2.  STFT 

The captured audio is then converted to a time-
frequency representation using the Short-Time Fourier 
Transform (STFT).  We use Hanning window with size 
512, a 1024-point DFT (discrete Fourier transform), and 
a 50% overlap (256 overlapped samples). The output of 
the STFT consists of both magnitude and phase matrices, 
but for single microphone recordings, we only consider 
the magnitude part. 

3.3.  SVM 

To identify various activities within a captured audio 
recording, we train a classifier for each piece of 
machinery. The learning algorithm which has been used 
in this research is the popular Support Vector Machine 
(SVM) algorithm.  SVM training and operation phases 
were carried out using the MATLAB SVM package, 
LIBSVM [23], with a radial basis function kernel. We 
extract 10 to 20 seconds for each activity as the training 
data to construct our SVM model. The SVM parameters 
C and γ were tuned using a grid search over a log-scale 
ranging from 2ି to 2ହ, and set differently in the models 
for each machine. We use 10-fold cross validation to 
select each combination of C and γ. After building the 
SVM models for each machine, we randomly extract 
other periods of the audio recordings to use as the testing 
data. 

3.4.  Window Filtering 

After building SVM models for each machine, we can 
identify activities from any part of the audio. However, a 
label will be assigned for each time bin. In practice what 
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we would prefer is a higher-level labeling of the full 
period for each of the different activities. Thus, we apply 
window filtering on the predicted label. Using a small 
window the algorithm scans through the SVM labels in 
the time domain and calculates the percentage for each 
activity. If the percentage for a particular activity is 
higher than a set threshold, the window is labeled with 
that certain activity.  This procedure is then repeated 
using a larger window. 

4 Experimental Setup and Results 

In order to evaluate the performance of the proposed 
system, 4 different pieces of construction machines 
operating at various jobsites were selected as case studies: 
1) JCB 3CX mini excavator 2) JD 270C Backhoe  3) 
Volvo L250G Wheel Loader and 4) CAT D5C Dozer.  

Each piece of machine was carefully monitored and 
the generated sounds while performing routine tasks 
were captured using a commercially available recorder 
(Tascam DR-05 2 GB). Next, each audio recording was 
manually labeled based on the various activities that took 
place during the recording time. Construction heavy 
equipment usually perform one major task (digging, 
loading, breaking, etc.) and one or more minor tasks 
(maneuvering, swinging, moving, etc.) in each cycle so 
we classified each audio recording based on two 
activities: Major and minor (or activity 1 and activity 2). 
For example, the major activity for JD 270C Backhoe is 
crushing.  

Each audio recording was then sent through the audio 
processing pipeline and divided into activities 1 and 2 
considering their manifestations in the STFT domain.   

Finally, the performance of the algorithm for each 
case study was compared to manually generated labels. 
The comparison results are depicted in Table 3 and 
Figures 5 and 6.  

In the table and figures, the label “Act 1” represents 
the major activity, while “Act 2” illustrates the minor 
activities. Table 3 indicates that the performance of the 
proposed system for automatically recognizing activities 
of single machines is very promising. For JCB 3CX mini 
excavator and CAT D5-C  Dozer , “Act 1” and “Act 2” 
have strongly dissimilar patterns in the STFT domain, 
thus the identification performance can be over 90 
percent. Another way to visually evaluate the 
performance of the system is throughout the comparison 
charts as shown in Figure 6. 

5 Conclusion Remarks and Future 
Research Plans 

In this paper, an innovative system for automatically 
recognizing construction heavy equipment activities is 

presented and evaluated. This system utilities audio 
signals as the major data source.  Many tools and 
equipment used in construction activities produce a 
distinct sound. Even more, many of the actions are 
accompanied by a clear and dissimilar sound, be it 
digging soil or pouring concrete.  

Processing audio signals to extract semantic 
information requires several steps as described in the 
previous sections. It is necessary to implement a signal 
enhancement algorithm to reduce the background noise 
which can potentially produce false activity recognition 
results. A machine learning procedure (SVM) is also 
required to train the sounds of each operation and 
machine.  

The presented framework was tested using a number 
of audio files collected from various jobsites and the 
results are promising. As the first step of this research 
project, the proposed system has been able to accurately 
recognize sound patterns of single machines operating 
various tasks. As the plan for future research, the authors 
intend to study a challenging, yet more realistic setting 
by considering multiple machines operating 
simultaneously.    
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Figure 5. Visual representations of signal 
spectrums in frequency domain; From top to 
bottom: JD 270C Backhoe; Volvo L250G Wheel 
Loader; JCB 3CX mini excavator;  CAT D5C 
Dozer. 

 

Table 3. Comparison results for manually labeled audio 
files (correct label) versus the results obtained from 
implementing the audio system (predicted label). 
 

 
 
 

 
 

Figure 6. Comparison results between manually 
labeled audio files (blue) versus the results 
obtained from implementing the audio system 
(black). 

JD 270C Backhoe 
Correct Label 

Act. 1 Act. 2 
Predicted 

Label 
Act. 1 0.8375 0.1728 
Act. 2 0.1625 0.8272 

Volvo L250G Wheel 
loader 

Correct Label 
Act. 1 Act. 2 

Predicted 
Label 

Act. 1 0.8003 0.1136 
Act. 2 0.1997 0.8864 

JCB 3CX mini 
excavator 

Correct Label 
Act. 1 Act. 2 

Predicted 
Label 

Act. 1 0.8326 0.0218 
Act. 2 0.1674 0.9782 

CAT D5C Dozer 
Correct Label 

Act. 1 Act. 2 
Predicted 

Label 
Act. 1 0.8490 0.0477 
Act. 2 0.1510 0.9523 


