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Abstract
Various activities of construction equipment are associated with distinctive sound patterns (e.g., excavating soil, breaking 
rocks, etc.). Considering this fact, it is possible to extract useful information about construction operations by recording 
the audio at a jobsite and then processing this data to determine what activities are being performed. Audio-based analysis 
of construction operations mainly depends on specific hardware and software settings to achieve satisfactory performance. 
This paper explores the impacts of these settings on the ultimate performance on the task of interest. To achieve this goal, 
an audio-based system has been developed to recognize the routine sounds of construction machinery. The next step evalu-
ates three types of microphones (off-the-shelf, contact, and a multichannel microphone array) and two installation settings 
(microphones placed in machines’ cabin and installed on the jobsite in relatively proximity to the machines). Two different 
jobsite conditions have been considered: (1) jobsites with single machines and (2) jobsites with multiple machines operat-
ing simultaneously. In terms of software settings, two different SVM classifiers (RBF and linear kernels) and two common 
frequency feature extraction techniques (STFT and CWT) were selected. Experimental data from several jobsites was 
gathered and the results depict an accuracy over 85% for the proposed audio-based recognition system. To better illustrate 
the practical value of the proposed system, a case study for calculating productivity rates of a sample piece of equipment is 
presented at the end.

Keywords  Microphone arrays · Audio signal processing · Construction equipment · Activity recognition · Fourier 
transform

1  Introduction

Recognizing the activities of construction heavy equipment 
is a major step toward productivity analysis of a jobsite. 
Aside from productivity monitoring, recognizing the activi-
ties of construction machinery provides useful information 
for various other purposes including scheduling and cost 
estimation [1] jobsite layout analysis and decision making 
[2] and monitoring and optimization of fuel consumption 
[3]. Some manufacturers have started to integrate their pro-
prietary monitoring devices with new equipment, but con-
struction contractors are unlikely to have a fleet composed 

entirely of new and single-manufacturer equipment for this 
to represent an immediate solution. The common alterna-
tive approaches for heavy equipment activity recognition 
require active and/or passive external sensors [4–14]. Active 
sensors include GPS and micro-electro-mechanical systems 
(MEMS) and devices such as accelerometers and gyro-
scopes, while passive sensors include image/video process-
ing using computer vision algorithms [15].

During the past few years, another category of input data, 
audio, has been investigated by researchers for recogniz-
ing various activities of construction heavy equipment and 
machines. The idea is that construction heavy equipment 
generates distinct sound patterns while performing different 
activities that can provide useful information when properly 
recorded and processed gap [16–19]. The idea of analyz-
ing sounds generated by various engineering systems and 
devices has appeared in several research and application 
areas such as speech recognition, audio-based navigation 
of robots, the use of sonar in the exploration and mapping, 
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ultrasonic signal processing for condition-based mainte-
nance (CBM) in manufacturing workplaces [20, 21], and 
audio signal processing for feature recognition in medical 
devices. Each of these applications requires their own hard-
ware and software settings (types of microphone and other 
acoustic recording devices, layout of microphones, number 
and distance between the sound capturing devices, etc.)

Despite the widespread use of audio signal processing 
techniques for analysis and modeling of various engineering 
techniques, the application of these methods in construction 
management area is still in early stages of development. This 
paper summarizes recent studies conducted by the authors 
evaluating necessary hardware devices and computing tech-
niques, mostly suitable for capturing and processing audio 
files in large-scale, noisy, and cluttered construction jobsites.

2 � Literature Review: Acoustical Modeling 
of Engineering Systems

Bengtsson et al. [20] define audio-based feature identifica-
tion as a three-module process (Fig. 1). First, the sound is 
recorded into a computer as an input to the processing mod-
ule. The processing module consists of two steps: pre-pro-
cessing to remove unwanted noise and to extract a period of 
interest and feature extraction to identify characteristic fea-
tures of the audio sample and create a feature vector. Once 
the feature vector is created, the condition monitoring and 
diagnosis module consists of comparing the audio sample 
to an existing library and providing a condition diagnosis. 
If the software is in the learning mode, newly identified vec-
tors are stored into the case library. Although this model 
describes ultrasound-based CBM systems, it is characteristic 
to most audio-based machine learning practices and can be 
applied to other fields.

Some typical applications of ultrasound-based CBM 
include: bearing inspection; testing gears/gearboxes; 
pumps; motors; steam trap inspection; valve testing; detec-
tion/trending of cavitation; compressor valve analysis; leak 
detection in pressure and vacuum systems such as boilers, 
heat exchangers, condensers, chillers, tanks, pipes, hatches, 
hydraulic systems, compressed air audits, specialty gas 

systems and underground leaks; and testing for arcing and 
corona in electrical apparatus [22].

In the medical setting, similar technologies have been 
developed to monitor patients with chronic diseases such 
as asthma and chronic obstructive pulmonary disease 
(COPD). Specifically, to evaluate the adherence to inhaler 
medication, which involves doses being taken in a consistent 
schedule and with a proper method. The inhaler compliance 
assessment (INCA) device was developed as an approach 
to evaluate inhaler adherence. This device is attached to a 
widely used variety of inhalers and when the patient opens 
the mouthpiece to take a dose, the INCA device takes an 
audio recording with a timestamp. One month of typical 
inhaler use yields 60 audio files corresponding to 60 doses 
of medication. Analyzing this data set takes an experienced 
pulmonary clinician an average of 30 min. This type of 
labor-intensive analysis is not feasible with a large group 
of patients. Thus, a computer algorithm has been designed 
to analyze audio data sets and provide an adherence score 
based on dose schedule and the pattern of blister, exhalation, 
and inhalation events [23]. This sort of study provides use-
ful information for clinicians to understand why a specific 
inhaler is not effective and propose methods to enhance the 
patient’s adherence [24].

3 � Literature Review: Automated 
Recognition and Monitoring 
of Construction Operations

Construction industry lags behind manufacturing indus-
tries in terms of adapting new technologies and automated 
solutions. According to the statistics provided by the Lean 
Construction Institute, this is the primary reason that the 
productive time in the construction industry is only 43%, 
while it is 88% in manufacturing. For many years, the con-
struction industry has suffered from the lack of real-time 
performance monitoring, holistic project management, labor 
efficiency, and waste prevention tools. Fortunately, this pat-
tern has started to change in recent years. Nowadays, sens-
ing technologies are vastly used to collect necessary data 
(e.g., energy consumptions, spatial data, location tracking 
of building elements, etc.) from construction jobsites. Auto-
mation solutions and robotic techniques are becoming more 
popular among construction industry experts and building 
information modeling (BIM) revolutionized the entire design 
and construction phases of construction projects.

Although the potential for applications is boundless, 
there has been little prior work studying the implemen-
tation of audio signal processing techniques specifically 
in the area of construction engineering and management. 
The motivation behind an audio-based activity recognition 
framework for construction operations lies in the inherent Fig. 1   Schematic for computer-based feature identification [20]
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limitations of the existing techniques for detailed assess-
ment of the construction activities. These limitations have 
hindered the successful adoption of these techniques and 
hence the industry still relies heavily on the experience of 
project managers on the jobsite to perform such assess-
ments. In comparison with other active and passive activ-
ity recognition methods, working with audio signals pro-
vides the following advantages:

•	 Most active sensors (GPS, accelerometers, etc.) need 
to be directly mounted on the equipment. In addition, 
for each machine, at least one sensor is required. As 
explained in this work, this is not a limitation for an 
audio-based activity recognition method. Microphones 
can be installed in various locations at the jobsite and 
one microphone is usually able to cover the activities of 
many machines.

•	 Computer vision methods are very sensitive to environ-
mental factors such as lighting conditions and occlu-
sions. In addition, the limited field of view of cameras 
is another major drawback for computer vision methods 
(Fig. 2). Microphones and audio signals are more resil-
ient against the above-mentioned limitations.

•	 The sound produced by each piece of equipment is inde-
pendent of the operator. As the result, an operator can 
perform an activity in a variety of ways. An action recog-
nition system based on location sensors and/or computer 
vision techniques would need to take these different sce-
narios into account, while an audio analysis always yields 
the same result.

•	 Compared to video data, audio files have lower data rates 
and are therefore computationally more efficient.

Choosing the optimal hardware setting (type and location 
of microphones) and software (selecting proper algorithms 
and tuning algorithmic parameters) is a crucial stage for 
acoustical modeling of real-world construction jobsites.

Using automated approaches such as the proposed audio-
based activity detection and recognition system at construc-
tion jobsites would significantly reduce monitoring expenses 
and durations. In addition, it will serve as an assistant tool 
for construction managers and jobsite personnel. Automat-
ing various aspects of construction operations has another 
important impact: it would eliminate several labor-intensive 
and manual steps, which could eventually lead to involve-
ment of people with limited physical activities and/or disa-
bilities to be more engaged within the construction industry.

4 � Hardware Setting: Different Types 
of Microphones

The primary devices used for audio recording are micro-
phones. A microphone generally contains a diaphragm, 
either surface or moving, designed to capture electroacoustic 
waves and generate electronic signals. Typical microphone 
classifications involve distinguishing either by their pickup 
pattern or by the type of transducer they employ.

Per Ballou [25], the pickup pattern refers to how the 
microphone discriminates among different directions of the 
incoming sound. The most common microphone types are 
omnidirectional, bidirectional, and unidirectional or cardioid 
microphones. In an omnidirectional microphone, the pickup 
pattern is equal in all directions. Omnidirectional micro-
phones are particularly useful when it is necessary to cap-
ture all audio sources in an environment. In a bidirectional 
microphone, the pickup pattern is equal in two opposite 
directions and negligible at 90° from these two directions. 
Bidirectional microphones are particularly useful when it 
is necessary to capture the conversations of two speakers 
positioned face to face. In a unidirectional microphone, the 
pickup pattern has a cardioid shape facing in just one direc-
tion. Of all three, unidirectional microphones are the most 
widely used, because they allow the user to focus on a spe-
cific source of interest. Pickup pattern is a key factor for 
acoustical modeling of construction jobsites, since in a mul-
tifaceted jobsite several pieces of construction equipment 
might work simultaneously, generating sound from multiple 
locations and directions. More details about various types of 
microphones are provided in Fig. 3 [25].

A transducer is a device that converts a physical stimulus 
to an electrical signal output. Transducers can be carbon, 
crystal, and ceramic microphones, condenser microphones, 
dynamic microphones, and electret condenser microphones. 
Microphone selection by the type of transducer is another 
key consideration in a construction jobsite. Transducers 

Fig. 2   Limited field of view of cameras is a major issue with using 
computer-based activity recognition algorithms at construction job-
sites [16]
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must be robust enough to withstand inclement weather and 
other contingencies while maintaining stable audio signal 
recording characteristics.

For this research, three microphones of varying types 
have been selected (Fig. 4): (1) a Zoom H1 digital handy 
recorder, an off-the-shelf microphone; (2) a Korg CM-200 
clip-on contact microphone; and (3) an xCore-200 multi-
channel microphone array. Condenser microphones and a 
variant of these called the MEMS microphones are the type 
of microphones built into the Zoom H1 handy recorder and 
the XMOS microphone array, respectively. Per Yamaha [26], 
condenser microphones have good sensitivity to all frequen-
cies, but are highly susceptible to structural vibration and 
humidity. Crystal and ceramic microphones are the type of 
microphones built into the Korg contact microphones [27]. 
Their name comes from the fact that these devices use piezo-
electric crystals such as Rochelle salt, tourmaline, barium 
titanate, and quartz to convert pressure differences from 
the environment into a voltage output. Due to this pressure 
response characteristic, crystal microphones can be built to 

pick up vibrations from contact with objects, as opposed to 
common microphones that pick up air-carried sound waves.

Contact microphones are built with a unidirectional, 
piezoelectric transducer, which is designed to be less sus-
ceptible to air-carried sound waves and more susceptible to 
surface-borne sound waves. The Korg CM-200 microphone, 
selected for data collection in this research, is commonly 
used in applications that involve capturing sound from a 
specific musical instrument (e.g., brass instrument, guitar, 
violin, and ukulele) when recording or practicing with an 
entire music band [27]. Contact microphones have the poten-
tial to be attached to heavy machinery while not being overly 
susceptible to the vibrations of the machine itself, unlike 
condenser microphones.

A microphone array is composed of at least two micro-
phones working in tandem arranged in a linear, rectangular, 
or circular pattern. These microphones are usually omnidi-
rectional; however, some microphone arrays are built using 
directional microphones or a combination of omnidirectional 
and directional microphones. Brandstein and Ward [30] 
compiled over 20 years of research in array-based micro-
phone technology, which resulted in a thorough reference 
for immediate applicability of array technology in current 
systems and in improvement of existing devices. The appli-
cations for array-based microphones recorded in this com-
pilation are based on beamforming techniques and include 
speech enhancement, speech recognition, source localiza-
tion, noise reduction, echo cancellation, and separation 
of acoustic signals. Source localization and separation of 
acoustic signals have the potential to be very useful tools 
for locating heavy equipment and separating audio signals 
from other machinery working simultaneously in cluttered 
jobsites.

0
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0

0

0

0

0

Fig. 3   Performance characteristics of several microphones [25]

Fig. 4   Different types of microphones used in the project: Zoom 
H1 digital handy recorder (left) [28]; Korg CM-200 clip-on contact 
microphone attached to construction equipment (center); xCORE-200 
microphone array evaluation board—top view—(right) [29]
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The XMOS xCORE-200 microphone array board, 
selected for data collection in this research, is a hardware 
and reference software platform equipped with 7 omnidi-
rectional MEMS microphones with pulse density modula-
tion (PDM) output (1 microphone is placed at the center at 
the board and the remaining 6 microphones are distributed 
equidistantly around the board edge, as shown in Fig. 4), a 
digital–analog converter (DAC), a processor with 16 32-bit 
logical cores, onboard low-jitter clock sources for multiple 
clocking options, 4 configurable buttons, 13 LED indicators, 
a USB 2.0 port, a RJ45 Ethernet port, a 3.5 mm audio jack, 
and other components. This particular microphone array 
board and its reference developer firmware are targeted, but 
are not strictly limited to, voice user interface (VUI) appli-
cations [29].

5 � Research Methodology: Audio‑Based 
Activity Recognition of Construction 
Heavy Equipment

To determine the software and hardware requirements for 
acoustical modeling of construction jobsites, the authors 
have developed an audio-based model for activity recog-
nition of construction heavy equipment (Fig. 5). The five 
core components will be briefly described below. Hardware 
settings for data collection will be discussed thoroughly in 
the next section. More detailed information about the imple-
mented system can be found at [31].

5.1 � Denoising

Audio samples of heavy equipment mixed are almost cer-
tainly contaminated with noise from other sound sources 
found in a jobsite. To reduce the effect of this noise on later 
processing tasks, it is necessary to filter out as much noise 
as possible prior to subsequent processing. However, noise 

filtering can also degrade the desired (equipment) signal 
and so the filtering must be balanced to reduce unwanted 
noise effectively while minimizing the distortion of the 
sound patterns of interest. Additionally, noise filtering must 
remain effective under the assumption that noise sources 
at a jobsite are not necessarily constant, since workers and 
equipment perform short tasks in an intermittent manner. 
Thus, a denoising algorithm for non-stationary environments 
developed by Rangachari and Loizou [32] was selected for 
implementation using MATLAB. This algorithm uses a 
noise estimation method for non-stationary environments 
that rapidly adapts depending on relative level of noise vs. 
signal of interest.

5.2 � Sound Source Detection (Steered Response 
Power and Beamforming)

The case of dealing with multiple machines operating simul-
taneously at a jobsite is more challenging due to overlap 
between the sounds patterns generated by various machines. 
As a result, it is necessary to separate generated sound pat-
terns by each individual machine first. For multiple machine 
recordings, sounds from different machines come from dif-
ferent directions. A robust source detection and activity 
recognition algorithm must respond to sound from a spe-
cific direction and block most of the noise from outside the 
direction of interest. To achieve this goal, the first step is 
to estimate the arrival direction for the sounds of interest. 
Direction of arrival for different machines is estimated using 
steered response power (SRP). The idea of SRP is that the 
location of the signal source radiates more energy than all 
other locations [33].

Thus, we can identify directions of arrival by scanning 
over all feasible angles and choosing the one with the largest 
value power. In practice, we scan through a hemisphere and 
find the direction with largest power. After finding the range, 
elevation and azimuth value from SRP, beamforming is used 
to isolate the signal from the desired direction. Beamforming 
consists of a spatial filter that uses the inputs from multiple 
microphones to isolate (as much as possible) signals arriving 
from a particular direction [34, 35]. The illustration of ideal 
direction detection result is shown in Fig. 6. The top figure 
shows the positions for microphones and sound sources, and 
the bottom figure shows the directions detected by the SRP 
technique. In our pipeline, we choose delay-and-sum beam-
former, since it is the simplest and still highly effective.

5.3 � Short‑Time Fourier Transform (STFT)

Once enhanced and isolated, each audio signal is then con-
verted into a time–frequency domain representation using 
the STFT. This technique consists of dividing a temporal sig-
nal into short segments and computing the Fourier transform 

Fig. 5   The audio-based model for activity analysis of construction 
heavy equipment
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for each segment, thereby extracting sinusoidal frequency, 
magnitude, and phase content of each segment and repre-
senting these features as they change over time. MATLAB 
was used for STFT implementation using a Hanning widow 
size of 512, a 1024-point discrete Fourier transform, and a 
50% overlap. For the subsequent processing, only the mag-
nitude content is retained.

5.4 � Support Vector Machines (SVMs)

To identify activities being performed by construction 
equipment within an audio recording, an SVM classifier 
was trained to recognize each piece of equipment while per-
forming major activities (class 1) and minor activities (class 
2). The reasons for selecting SVM as the major machine 
learning platform was its popularity among signal process-
ing research community as well as satisfactory results based 
on previous studies [36, 37]. SVM classifiers operate based 
on a simple principle: given an input of training data con-
sisting of two classes, the system will generate a dividing 
hyperplane with maximum distance to the training samples 
(Fig. 7). Twice this distance is considered as the margin. 
Margin maximization reduces susceptibility to noise while 
employing the SVM to classify new data sets.

For this project, the LIBSVM MATLAB package was 
used [36]. Four audio segments of the construction equip-
ment performing a major activity were used to train class 
1, and four audio segments of the construction equipment 
performing a minor activity were used to train class 2. 
Each of these segments was selected to be 2–6 s long and 
included only the STFT magnitude. To guarantee correct 
SVM parameter selection, tenfold cross-validation was used. 
It is well known that the performance of the SVM algorithm 
highly depends on the selected kernel function [37]. For this 
research, the linear and radial basis kernel functions have 
been selected, and experiments have been performed with 
both.

5.5 � Window Filtering

Once an SVM classifier is generated for a specific construc-
tion equipment, it can be used for classification of the rest 
of the audio file. Nonetheless, direct implementation would 
potentially yield an output with predicted activities chang-
ing erratically from one time-frequency bin to the next. 
Therefore, a window filtering algorithm was implemented 
to smooth out the classified output. The window filtering 
parameters are a small window size, a large window size, 
and a threshold. Initially, if the SVM labels indicate that the 
percentage for a certain activity is greater than the thresh-
old throughout the small window, the whole small window 
is labeled as that activity. Then, this is repeated using the 
small window labels for the large window size. The size of 
the window will vary in different cases, but in general the 
small window can be set as a quarter second and the large 
window can be a second or 2 s.

Fig. 6   Direction detection steps. The positions for microphone array 
and sound sources (top); two directions detected by steered response 
power method (bottom)

Fig. 7   A simple demonstration of optimal SVM hyperplane
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6 � Experimental Setup: Audio‑Based Activity 
Recognition of Single Machines

A selection of various construction heavy equipment has 
been chosen to help assess how well the audio-based activ-
ity analysis system performs under different hardware and 
software settings. Using four recording devices, audio data 
from heavy machinery performing routine activities was 
collected. The selected microphones were two off-the-shelf 
Zoom H1 handy recorders (regular microphone), one on a 
tripod located on-site and one onboard the machine; one 
XMOS xCORE-200 USB microphone array connected to 
a laptop; and one KORG CM-200 contact microphone con-
nected to a flat surface in the cabin of the equipment. The 
XMOS microphone array was interfaced to a Windows PC 
using the manufacturer’s USB Audio Class 2.0 Evaluation 
Driver for Windows and multichannel audio was recorded 
through Audacity, an open source program for recording and 
processing audio. The setup process for data collection is 
depicted in Fig. 8.

7 � Experimental Setup: Audio‑Based 
Activity Recognition of Multiple Machines 
Working Simultaneously on a Jobsite

The experimental setup for the single machine case is almost 
the same as the multiple machine case. The only difference 
is that we only use the XMOS xCORE-200 USB micro-
phone array and regular on-site microphone in the multiple 
machine cases. Also, we record each machine separately 
to be used as our training library in the multiple machine 
cases. Recordings from the microphone array can provide 
us with phase information, which can help us track the loca-
tion of sound sources as described above. With the spatial 

information, the proposed activity recognition framework 
can work better in the multiple machine cases.

In addition to audio data recording, a video sample was 
taken using a digital video camera to serve as a reference 
for manual labeling of major and minor activities (Fig. 8). 
Examples of major activities include digging, loading, 
dumping, and crushing rock, while examples of minor activ-
ities include swinging, maneuvering, and extending arm. 
Once the devices were in place and recording, a loud sound 
was produced with an air horn. This signal was to be used as 
a synchronization point for the data. Manual labels served as 
ground truth data to assess the activity recognition accuracy.

The results for one sample machine are depicted in Fig. 9. 
The machine, an Ingersoll Rand SD25 compactor, was 
recorded using a Zoom H1 digital handy recorder placed 
relatively close to the machine on the jobsite. The presented 
results are based on using an SVM with a linear kernel. The 
top part of the figure presents the normalized frequency for 
the machine’s audio signal, while the middle and bottom 
plots show the actual (black) versus predicted (blue) activity 
labels and over the audio recording time period. As indicated 
in these figures, there is an excellent correlation between 
the actual and predicted results generated for the Ingersoll 
Rand compactor.

To quantify the accuracy of obtained results, the mean 
squared error (MSE) or mean squared deviation (MSD) 
values of case study machines have been calculated. MSE 
is the measure of quality of an estimator—it is always non-
negative, and values closer to zero are better:

where X
i
 is the predicted label, X̂

i
 is the actual label, and n is 

the total number of labels. Obtained results, which are very 
promising, are summarized in Table 1.

(1)MSE =
1

n

n
∑

i−1

(X
i
− X̂

i
)2,

Fig. 8   Setup process for audio collections using microphone array and off-the-shelf microphone on-site (left), and contact microphone and off-
the shelf microphone onboard (middle); simultaneous video recording for generating the ground truth data (right)
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8 � Experimental Setup: Comparison 
between Different Frequency Feature 
Extraction Techniques

Selecting optimum frequency feature extraction method is 
an important decision for optimizing the performance of 
the proposed audio-based activity recognition package. In 
this study, two common feature extraction techniques, the 
short-time Fourier transform (STFT) and the continuous 
wavelet transform (CWT) have been selected and com-
pared. STFT is based on dividing a long-time signal into 

short segments and computing the Fourier transform for 
each segment. CWT is a derivation of the Fourier trans-
form that was primarily designed to locate frequency fea-
tures in time or space. The Fourier transform is a powerful 
tool for frequency analysis; however, it does not character-
ize rapid frequency changes efficiently, because it repre-
sents data as a sum of sine waves, which extend to infinity. 
A wavelet is a rapidly decaying, wave-like oscillation that 
has zero mean. More detailed information regarding each 
feature extraction method could be found at relevant refer-
ences such as Mathworks, Inc. report, 2017 [38].

To conduct the comparison study between STFT and 
CWT, both techniques were implemented using record-
ings taken at local construction jobsites for various types 
of equipment. Two configurations for CWT (8 octaves/32 
scales per octave; and 10 octaves and 24 scales per octave) 
and one configuration for STFT (1024 frequency points, 512 
sample windows, and 256 overlapped samples) have been 
employed in this research.

9 � Results and Discussion

Tables 2, 3, 4, 5 and 6 and Figs. 9, 10 , 11 and 12 summarize 
comparison results for several construction equipment under 
different hardware and software configurations. Through 
careful analysis of these results, we arrive at the following 
conclusions.

•	 For onboard microphone placement, contact micro-
phones generate slightly more accurate results and, thus, 
are the better choice (Table 2).

•	 A comparison for the current case study results shows 
that regular microphones placed on the construction site 

Fig. 9   Results for Ingersoll Rand SD25 Compactor

Table 1   Comparison between actual and predicted activity labels 
through calculating MSE values

Machine Mean squared 
error (MSE)

JD 700J Dozer 0.1205
JD 670G Grader 0.204
JCB 3CX Excavator 0.253
Komatsu PC200 Excavator 0.291
Concrete Mixer 0.147

Table 2   Comparison between contact and regular microphones 
(onboard/SVM using the RBF kernel)

Machine Contact microphone Regular micro-
phone

Major 
activity 
(%)

Minor 
activity 
(%)

Major 
activity 
(%)

Minor 
activity 
(%)

JD50D Compact Back-
hoe

72.08 74.02 71.14 82.78

Ingersoll Rand Compac-
tor

80.34 7.83 80.07 1.98

CAT 320E Excavator 80.78 38.26 71.20 29.71
Komatsu PC200 Excava-

tor
71.05 48.56 70.16 55.59

JD 700J Dozer 76.16 64.46 78.79 60.15
Hitachi 50U Excavator 49.58 57.96 53.15 54.17
Concrete Mixer 2 68.79 65.68 77.16 70.23
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yield better accuracies than contact microphones attached 
to flat surfaces in the cabin. One clear reason for this 
phenomenon is that contact microphones onboard are 
affected by engine noise and the vibrations; nonetheless, 
further investigations using several other data sets and 

under different jobsite conditions might be required to 
fully substantiate this conclusion (Tables 3, 4).

•	 As shown in Fig. 10, results show that the radial basis 
function kernel outperforms the linear kernel in most 
cases, particularly when it comes to recognizing the 
major activities.

•	 No significant differences can be found between regu-
lar microphones and microphone arrays when it comes 
to recognizing the activities of single machines through 
microphones placed on-site. This is due to there being 
only one source of audio, and therefore only one direc-
tion of incoming audio. It is suggested that a noticeable 

Table 3   Comparison between contact (onboard) and regular (on-site) 
microphones

Machine Contact microphone 
(onboard)

Regular microphone 
(on-site)

Major 
activity (%)

Minor 
activity (%)

Major 
activity (%)

Minor 
activity (%)

CAT 320D 
Backhoe 
Excavator

80.78 38.26 81.09 71.48

JD 333E 
Compact 
Loader

73.42 95.68 86.54 90.11

JD50D 
Compact 
Backhoe

72.08 74.02 86.65 57.74

Ingersoll 
Rand Com-
pactor

80.34 7.83 81.58 32.03

CAT 320E 
Excavator

80.78 38.26 81.09 71.48

Komatsu 
PC200 
Excavator

71.05 48.56 82.17 67.89

JD 700J 
Dozer

76.16 64.46 84.69 72.45

Concrete 
Mixer 2

68.79 65.68 83.23 61.59

Table 4   Comparison between on-site and onboard regular micro-
phones

Machine On-site Onboard

Major 
activity 
(%)

Minor 
activity 
(%)

Major 
activity 
(%)

Minor 
activity 
(%)

JD50D Compact Back-
hoe

86.65 57.74 71.14 82.78

Ingersoll Rand Compac-
tor

81.58 32.03 80.07 1.98

JD 333E Compact 
Loader

86.54 90.11 80.67 81.47

CAT 320E Excavator 81.09 71.48 71.20 29.71
Komatsu PC200 Excava-

tor
82.17 67.89 70.16 55.59

JD 700J Dozer 84.69 72.45 78.79 60.15
Hitachi 50U Excavator 79.89 55.97 53.15 54.17
Concrete Mixer 2 83.23 61.59 77.16 70.23

Table 5   Comparison between array and on-site regular microphones 
on multiple machine recordings

Multiple machine cases Microphone array On-site regular 
microphone

Major 
activity 
(%)

Minor 
activity 
(%)

Major 
activity 
(%)

Minor 
activity 
(%)

Bobcat Loader and Bobcat Excavator
 Bobcat Loader 72.37 52.74 65.34 62.78
 Bobcat Excavator 74.29 60.17 68.16 51.17

Bomag Compactor and JD 544K Loader
 Bomag Compactor 81.12 49.07 70.22 57.88
 JD 544K Loader 76.14 55.47 59.74 41.81

CAT Bulldozer and CAT CS44 Compactor
 CAT Bulldozer 80.42 81.33 71.54 65.14
 CAT CS44 Compactor 79.08 77.29 67.44 50.08

CAT C5K Bulldozer and CAT 305E Excavator
 CAT C5K Bulldozer 78.57 61.90 57.82 39.97
 CAT 305E Excavator 77.69 64.18 62.26 47.64

Table 6   Calculated cycle time and productivity rates for the selected 
case study machine: JD 50G Backhoe

JD 50G Backhoe (bucket size: 24 inches—approximately 0.15 m3)

Cycle time (s)
 Actual 18.6 s
 Predicted 16.97 s
 % Error 9.6%

Number of cycles per hour (assuming 45 min efficient time per 
hour)

 Actual 144
 Predicated 159
 % Error 10.42%

Productivity rate (m3/h)
Based on bucket fill factor = 0.75
 Actual 15.85 m3

 Predicated 17.88 m3

 % Error 12.81%
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difference between a regular microphone and a micro-
phone array will be seen in the recording of multiple 
machines, and the multiple directions of generated audio 
from said machines. Microphone arrays will become 
useful to detect multiple audio directions from multiple 
audio sources.

•	 In Table 5, we can find in the multiple machine case, 
microphone array can provide us with better recognition 

results compared to regular on-site microphone. The rea-
son is that with direction detection step, we can eliminate 
most of the noise outside the direction of interest. When 
using the microphone array, we improve the performance 
of activity recognition using recordings that only con-
tain one machine sound as our training library. After the 
direction detection step, we used the trained library to 
perform the activity recognition in the mixed recording. 
However, when using a single on-site microphone, we 
can only do the activity recognition on the mixed record-
ing since we are lacking spatial information.

•	 In general, it can be observed that CWT scalograms yield 
a better time–frequency magnitude representation than 
STFT spectrograms (samples of generated results for a 
case study machine (JCB 3CX) is presented in Fig. 11). 
Additionally, it has been illustrated that using a smaller 
number of octaves with higher resolution within the 
octaves is preferable when lower-frequency features are 
not of interest. Using a CWT with eight octaves outper-
formed using a CWT with ten octaves on processing time 
and labeling accuracy.

10 � Case Study

To better understand the potential application of the pro-
posed system in construction projects, a case study is pre-
sented here: An earthmoving jobsite with a John-Deere 
50G Backhoe was considered as the testbed. The Backhoe 
was equipped with a 24” bucket with a nominal capacity 
of 0.15 m3. The machine performed the excavation tasks 
in a cyclic form. Each operation cycle consists of a series 
of activities: excavating, loading, swinging, and dumping. 
The entire operation was carefully monitored manually and 
by recording generated audio files for one complete shift (4 
working hours). The recorded audio files were processed 
by the proposed system and different activities as well as 
average cycle times have been calculated. By calculating 
cycle times and since the bucket size is known (0.15 m3), 
the average productivity rate of the whole operation could 
be calculated using the following equation:

Results of recognizing activities and average productiv-
ity rates based on generated sound patterns as well as actual 
observations are summarized in Table 6.

Obtained results illustrated that is possible to accurately 
predict productivity rates of the case study machine with less 
than 15% error. Accurately predicting productivity rates of 
construction equipment is an important task for construction 
engineers and jobsite personnel and the results could be fur-
ther employed for different applications such as automated 

(2)
Productivity rate = Output per cycle × number of cycles per hour.

Fig. 10   Summary of the results for implementing RBF and linear ker-
nels for activity recognitions of machines (major activities)

Fig. 11   Sample of comparison results between CWT (10/24) vs. 
STFT spectrograms—machine: JCB 3CX

Fig. 12   Labeling comparison between CWT (10/24) vs. STFT spec-
trograms—machine: JCB 3CX
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calculation of accomplished work, predicting necessary 
budget (and time) for remaining work, earned value analy-
sis, etc.

11 � Summary and Conclusion

This work provides an innovative audio-based solution 
for activity analysis of construction heavy equipment and 
acoustical modeling of construction jobsites. An audio-
based activity recognition model has been developed and 
tested under various hardware and software settings for the 
case involving single machines. The methods of the experi-
ment apply the three types of microphones discussed ear-
lier (off-the-shelf, contact, and microphone arrays) and two 
placement settings (on-board vs. on-site). The comparison 
results have been presented in the previous sections of this 
paper. Additionally, the results were also processed with 
two major SVM kernel types (linear and RBF) to determine 
which kernel yielded the best results. The RBF kernel per-
formed better in most cases. As an extension of the current 
research, plans for future research include expanding into 
the following items:

•	 Implementing and testing the audio-based model with 
more diverse data sets and conditions.

•	 Determining what hardware and software settings would 
be required to implement this system on a jobsite with 
multiple machines working simultaneously.

•	 Developing more robust algorithms that would recognize 
more detailed tasks performed by heavy equipment and 
machinery. That is, separating major and minor activities 
into sub-activities.
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