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A B S T R A C T

In the construction industry, especially for civil infrastructure projects, a large portion of overall project ex-
penses are allocated towards various costs associated with heavy equipment. As a result, continuous tracking and
monitoring of tasks performed by construction heavy equipment is vital for project managers and jobsite per-
sonnel. The current approaches for automated construction equipment monitoring include both location and
action tracking methods. Current construction equipment action recognition and tracking methods can be di-
vided into two major categories: 1) using active sensors such as accelerometers and gyroscopes and 2) im-
plementing computer vision algorithms to extract information by processing images and videos. While both
categories have their own advantages, the limitations of each mean that the industry still suffers from the lack of
an efficient and automatic solution for the construction equipment activity analysis problem. In this paper we
propose an innovative audio-based system for activity analysis (and tracking) of construction heavy equipment.
Such equipment usually generates distinct sound patterns while performing certain tasks, and hence audio signal
processing could be an alternative solution for solving the activity analysis problem within construction jobsites.
The proposed system consists of multiple steps including filtering the audio signals, converting them into time-
frequency representations, classifying these representations using machine learning techniques (e.g., a support
vector machine), and window filtering the output of the classifier to differentiating between different patterns of
activities. The proposed audio-based system has been implemented and evaluated using multiple case studies
from several construction jobsites and the results demonstrate the potential capabilities of the system in accu-
rately recognizing various actions of construction heavy equipment.

1. Introduction

It is an unfortunate fact that the construction industry suffers from
lower productivity rates as compared to most manufacturing industries.
According to the Lean Construction Institute [1], the productive time in
the construction industry is only 43%, compared to 88% in manu-
facturing. One major factor contributing to this issue is that construc-
tion projects are all unique and it is typically very difficult to find
completely similar projects/operations. As a consequence, in contrast to
the manufacturing industries which includes highly repetitive pro-
cesses, a single project management technique or a single set of fixed
performance measures are rarely available in the construction industry.
Thus, the first step towards improving productivity within the con-
struction industry is to develop efficient techniques for assessing the
performance and productivity of key resources that is sufficiently
flexible to handle the widely varying conditions that arise across dif-
ferent jobsites. Since a large portion of total project costs typically

derive from the costs of renting/owning/leasing/maintaining con-
struction heavy equipment, we will focus on recognizing and tracking
activities of construction heavy equipment. Note that beyond pro-
ductivity assessment and analysis, monitoring of construction equip-
ment is useful for emission control and monitoring [2], safety man-
agement [3], and analyzing/reducing idle times [4,5].

The common practice for recognizing and monitoring activities at
construction jobsites is through manual data collection and direct ob-
servations. This process is known to be time consuming and labor in-
tensive. In recent years a number of methods for automatically re-
cognizing and tracking locations and actions of construction heavy
equipment have been introduced. These methods include using active
sensors (GPS (Global Positioning System), accelerometers, RFID (Radio-
Frequency Identification) tags, etc.) or passive sensors (processing vi-
deos using computer vision algorithms). These methods are capable of
producing promising results; however, as explained below, several
constraints limit their application in real world construction jobsites. As
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a result, the construction industry still lacks a practical, real-time, and
non-intrusive method for performance characterization and monitoring
of jobsite operations.

To address the drawbacks of existing methods for activity analysis of
construction equipment, and in order to further advance the knowledge
in this area, this paper presents a novel activity analysis based on in-
telligent processing of audio signals. Audio signals, recorded and col-
lected at construction jobsites, reflect corresponding activities that take
place and can provide very useful information for project managers.
The proposed system begins with recording the sounds generated by
construction equipment during their routine operations by using com-
mercially available microphones. The recorded audio file then goes
through a signal enhancing and feature extraction algorithm to reduce
unwanted background noise. The result is then in the form of a time-
frequency decomposition which can be fed into a machine learning
algorithm such as a support vector machine (SVM) for the purpose of
classifying the time-frequency features as being characteristic of parti-
cular machines/activities.

The remainder of the manuscript is organized as follows. Section 2
outlines current states of practice and research for action/location
tracking of construction heavy equipment. This is followed by the re-
search methodology in Section 3. Section 4 summarizes necessary steps
for running experiments to evaluate the performance of the proposed
system and finally, conclusions and future research directions are pre-
sented in Section 5.

2. Location and action tracking of construction heavy equipment

2.1. Location tracking of construction heavy equipment

The current state of practice for monitoring construction operations
at jobsites is based on manually collecting and analyzing the necessary
data. The manual data collection process could take place either
through direct observations or by watching real time video streams.
Throughout this process, the operator must manually classify and re-
cord productive versus non-productive (or idle) times. The results,
along with other useful information such as maintenance notes and
qualities of accomplished work, are manually entered into timesheets or
other types of records. The ultimate goal of this process is calculating
the percentage of equipment time spent on value-adding activities and
thus, evaluating the productivity rates of the machine which will be
eventually used for time and cost analysis purposes.

The manual process of monitoring construction equipment activities
is labor intensive, time consuming, and error prone [6]. As a result,
both practitioners and researchers in the area of construction en-
gineering and management have recognized a substantial need for real
time, accurate, and dynamic systems for activity analysis and mon-
itoring purposes. Spatial location tracking of construction machines was
the first attempt to tackle this issue. The localization and tracking of
construction equipment (and other construction resources) is now a
common practice within the construction industry. Currently, a number
of companies (Giga Trak, Navman wireless, Fleetmatics, Linxup,
Fleetilla, LiveViewGPS, etc.) offer commercial packages and services for
location tracking of construction machinery. Accurately localizing and
tracking construction equipment enables project managers and ma-
chine owners to better manage their assets in terms of fuel consump-
tions, security concerns, and assessing the performance of operators.

Several remote sensing technologies such as GPS (Global
Positioning System), RFID (Radio-Frequency Identification), and Ultra-
Wideband (UWB) sensors can be used for location tracking of con-
struction machines. These technologies are all based on the time-of-
arrival principle: “the propagation time of a signal can be directly
converted into distance if the propagation speed in known” [7]. The
most popular localization system is GPS which provides location and
time information anywhere on the earth if there is an unobstructed line
of sight to four or more earth orbiting satellites [8]. Although the

service is available worldwide for free, attaching a high-precision GPS
receiver to every worker or equipment could become costly [9]. An
alternative approach is to use active RFID tags. Each tag includes an on-
board power source and a locally installed antenna for the signaling
electronics. These battery-powered tags can effectively communicate
with a receiver for distances of up to 100 m and their unit cost is in the
order of tens of dollars. Another advantage of these tags is the ability to
operate without line of sight at long distances which makes them a good
candidate for dynamic and crowded construction sites. The main issue,
however, is the identification problem: “a reasoning mechanism is re-
quired in order to locate-tagged construction items on jobsites” [9].
UWB sensing is a special form of active RFID that can locate objects
from communications between multiple tags and receivers. Tags emit
signals that can be captured and processed by fixed receivers. UWB has
shown several advantages in comparison to other active sensing tech-
nologies: longer range, higher measurement rates, improved measure-
ment accuracy, and immunity to interference from rain, fog, or
clutter [7]. However, the presence of a dense and expensive network of
stationary receivers (i.e., measurement infrastructure) is necessary for
this purpose.

The remote sensing technologies described here, facilitate 3D lo-
cation tracking; however, the primary issue that still remains challen-
ging is to recognize the equipment actions from indirect data (i.e., ac-
curately distinguish various productive actions from non-value-adding
ones). Moreover, the technologies described above are often viewed as
intrusive by equipment operators as a sensor needs to be installed on
each machine to record their every movement. The issue becomes even
more problematic for rental equipment due to the effort and cost of
repeatedly installing and removing sensing units from the equipment
and, consequently, the need to continuously update the monitoring
software database [10].

2.2. Action recognition of construction equipment using active sensors

Location tracking of heavy equipment provides very useful in-
formation; however, projects managers are typically more interested in
monitoring various operations performed by the machine over time,
instead of merely tracking locations. For this reason, researchers have
recently investigated several approaches to recognizing various actions
of equipment using active sensors. The application of sensors such as
gyroscopes and accelerometers for activity analysis purposes has been
studied in a number of other contexts, including healthcare, sport
management, and computer science [11–14]. Such sensors are able to
accurately provide acceleration and rotation rates in three dimensions
(on the x, y, and z axes). This information is particularly helpful for
activity tracking of construction equipment as the acceleration rates
differ for various tasks performed by the machines. In the study con-
ducted by Ahn et al. [15], accelerometer data was used to differentiate
between three modes of an excavator operation: engine-off, idling, and
working. Their study illustrated very promising results; however, the
level of detail in describing activities was limited to these three cate-
gories. In addition, the necessity of mounting active sensors on ma-
chines is still a serious problem. To overcome this issue, Akhavian and
Behzadan [6] investigated the use of built-in smartphone sensors to
extract accelerations and rotation information. Using smartphones
greatly facilitate the application of active sensors for activity recogni-
tion. However, the installation setting is not always feasible: The sensor
(s) need to directly be attached to the equipment (or place in the op-
erator's cabin). This setting is not always practical especially for some
smaller equipment/construction tools such as jack hammers, concrete
cutting saw, small concrete mixers and so on. For those cases, a passive
or indirect sensing system, without the need for being directly attached
to the machine, is more desired.

C.-F. Cheng et al. Automation in Construction 81 (2017) 240–253

241



2.3. Action recognition of construction equipment using computer vision

Within the last two decades, advances in high resolution cameras
and rapid increases in the computational capacity of computers has led
to the emergence of an alternative solution for the activity analysis and
tracking problems: computer vision. It is now possible for every in-
dividual working in a construction jobsite to carry an inexpensive
camera or a smartphone so that recording a video of the scene and
processing these videos using computer vision algorithms is a poten-
tially feasible solution for activity analysis of construction machines. An
off-the-shelf camera can be used to recognize the activities of con-
struction machines and potentially rectify the need for mounting so-
phisticated sensors on each piece of equipment.

A basic computer vision algorithm for performance monitoring of
construction heavy equipment consist of four major steps. First, the
desired object (one or multiple pieces of machines in this case) should
be recognized in the initial video frames using distinct features such as
color values or geometric and topological features (existence of Sharpe
edges, existence of convey vs. convex objects, etc.). The current object
recognition methods can be classified into three categories: recognition
by parts, appearance-based recognition, and feature-based methods. It
has been shown that the feature-based approach can attain the desired
performance in complex scenes by quantizing the descriptors of positive
and negative samples in order to be used for training a classifier.

As the second step, the precise location of the recognized object
should be tracked across the consecutive frames. The major advantage
of the object tracking step is to limit the search space to certain regions
in video streams and hence reduce the impact of noise caused by lateral
movements of the camera and dynamic foregrounds. Contour-based
tracking, kernel-based tracking, and feature matching are the three
popular tracking algorithms in the literature [16].

Action recognition is the third – and probably the most challenging
– step of a performance monitoring algorithm. It is worth noting that
there is an important distinction between the concept of actions and
movements. According to Bobick [17], for example, digging a founda-
tion by an excavator is a general action and includes different activities
such as digging, swinging, or dumping. Each activity itself consists of a
sequence of various movements like raising the arm, swinging the
bucket, or pushing the soil. In recent years, several researchers have
conducted studies on computer vision based methods for action re-
cognition of different types of construction equipment, especially those
involved in earthmoving projects. Zou and Kim [18] proposed an image
processing-based method for automatic quantification of idle times of
hydraulic excavators. Their suggested approach is limited to classifying
only productive versus idle states of hydraulic excavators. Rezazadeh
and McCabe [19] introduced a more general framework that is able to
combine object recognition, tracking, and rational events to recognize
dirt loading to a dump truck by a hydraulic excavator. Golparvar-Fard
et al. [20] proposed a method that initially represents a video stream as
a collection of spatio-temporal visual features and then automatically
learns the distributions of these features and action categories using a
multi-class support vector machine classifier. More recently, Bugler
et al. [21] combined photogrammetry and video analysis for tracking
the progress of earthwork processes. They implemented photo-
grammetry to calculate the volume of the excavated soil in regular
intervals while the video analysis was used for generating statistical
data regarding the construction activities.

The forth, and the final, step of a vision based monitoring algorithm
is the performance assessment step. During this step, the inferred ac-
tions are automatically logged along with temporal information. Such a
chronological list of actions could be used to assess the equipment's
well-being or abnormality over time and take preventive measures
when necessary to minimize the operating/repair cost and the down-
time. It is also a beneficial tool to measure the amount of accomplished
work. Finally, the overall performance of the equipment/workers (in-
dividually or as a system) is evaluated and areas for improvement are

identified from detailed field data. This enables analyzing the site as a
system and optimizing its overall performance.

2.4. Gaps in knowledge: why use sound?

Even though the results of applying computer vision algorithms for
recognizing various activities of construction equipment are promising;
a number of important constraints still limit their practical application.
Most importantly, computer vision algorithms are very sensitive to
environmental factors such as occlusions, lighting and illumination
conditions. It is very difficult to imagine a cluttered, busy jobsite
without occlusions arising which would eventually disrupt accurate and
automatic activity analysis results. Also important is that an appro-
priate level of illumination (not too dark, yet not in direct sunlight) is
required to captured high quality video streams [22–24]. This, at the
very least, makes it difficult to use computer vision for performance
monitoring of the operations that are performed after sunset (which is
especially popular in urban projects).

The idea of exploiting audio signals as an alternative source of in-
formation provides an alternative solution not subject to the limitations
described above. There are some existing works [25–27]. Audio signals
are a potentially rich source of information since construction heavy
equipment often generates unique sound patterns while performing
various tasks, and hence by processing this data we can potentially
extract a great deal of information regarding the underlying activities.
In addition, using audio signals provides a number of advantages over
images/video and/or traditional location tracking devices:

1. Existence of background noise might be considered as a negative
factor for audio signal processing algorithms; however, there are
several methods to address this issue and to remove/reduce un-
wanted background noise.

2. It is well known that some construction operations are easier to
recognize with sound than with other sensors. An excellent example
for this case is a hydraulic rock breaker. The two major activities of
a hydraulic rock breaker are a) maneuvering and positioning and b)
breaking up rock in a cycle. This is an extremely challenging sce-
nario for active spatial remote sensing and/or computer vision-
based approaches as the hammer only moves slightly while per-
forming the operation. However, the distinct sound of the hammer
and engine could be used to determine whether the equipment is
maneuvering, breaking rock, or idling.

3. It is also well known that a single camera can only cover a limited
field of view. To fully cover a large size construction jobsite, it
would be necessary to install a network of cameras in various lo-
cations, elevations, and/or angles, as shown in Fig. 1. This is not a
constraint for audio signals as most of microphones are able to op-
erate with 360° of sensitivity.

4. The audio pattern generated by each individual machine is often
independent of the operator and the specific way that the task is
performed. Operators can perform a task in several ways. For ex-
ample, imagine a hydraulic excavator is digging a trench. This op-
eration might include a series of movements such as diggings, ro-
tating, swinging, and loading. These tasks could be handled in
various ways such as different angles, swinging to left or right, etc. A
computer vision algorithm would likely need to consider all these
scenarios separately, while the audio signal analysis would always
yield the same result.

5. Majority of construction operations consist of several repetitive cy-
cles and the entire operation might take several days or weeks to
complete. A hydraulic excavator may spend several hours/days to
complete an excavation task. As a result, a robust recognition/
tracking algorithm should also be able to perform the recognizing/
tracking tasks for several hours/days. In other words, size and total
amount of the collected data is an important constraint. Table 1
summarizes the size of the data and computational requirements for
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different types of recognition methods. As shown in the table,
storing and processing audio files is computationally less expensive
than video streams and even the data collected by using on-board
location/acceleration sensors.

Compared to MEMS devices, a system based on processing audio
files provide the following advantages:

1. Although MEMS devices perform very well for activity recognition
of several different types of equipment (mainly heavy equipment
such as earthmoving machines), the sensor(s) need to directly attach
to the equipment (or place in the operator's cabin). This installation
setting is not always practical especially for some smaller equip-
ment/construction tools such as jack hammers, concrete cutting
saw, and small concrete mixers and so on. For those cases, a passive
or indirect sensing system, such as the proposed audio based system,
is a more feasible option since the microphones could only be in-
stalled somewhere in the jobsite and in the proximity of the ma-
chine.

2. MEMS devises could be mainly used for activity recognition of single
machines. For single machines, MEMS devices and the audio based
system both require similar hardware settings (one sensor or mi-
crophone per machine). When it comes to modeling a construction
jobsite as a whole system, and for the cases that several machines
operate simultaneously, an audio based system is a better option.
There is no need to attach one microphone to each single machine
and it is possible to handle the job by placing a couple of micro-
phones for the entire jobsite (depending on the size of the jobsites,
number of machines, etc.) and using robust source separation al-
gorithms and phase information of audio signals. Unlike MEMS
devices, an audio based system could also consider the possible in-
teractions between different machines as an extra source of in-
formation for analyzing the jobsite system. For example, when a
loader and a truck are getting close to each other to perform the
loading operation, the audio pattern/level is changing.

Finally, it is important to emphasize that this study is novel from the
perspective of the selected sensing data. For the first time, this study
introduces applying audio signals in Construction Engineering and
Management domain.

2.5. Audio based classification models for engineering systems

Audio signal classification is a broad research area. Audio signal
classification is part of the research aspect for auditory scene analysis,
which is the study of how we decompose an auditory scene into its
component auditory events. For any classification scheme to work on a
sound containing more than one auditory event, some auditory scene
analyses must be performed. Some classical applications for audio
signal classification include pitch detections, automatic music tran-
scriptions, speech and language applications, and multimedia data-
bases. Speech has been one of the fundamental audio research topics for
decades, thus a lot of audio signal classification works are conducted for
speech recognition [25,26]. In recent years, speech recognition gained
dramatic improvements in acoustic modeling yielded by machine
learning based models [28–30]. More details about audio signal clas-
sification can be found in David [27].

Other audio based classification models are also widely used in
engineering aspects. Bengtsson et al. [31] defined a three-module
process to diagnose audio recordings. The sound is first recorded into a
computer and then fed into the processing module. In this processing
module, the recording is pre-processed to remove unwanted signals
such as noise. After the pre-processing procedure, feature extraction is
conducted to identify characteristic features of the audio sample. Once
features for the audio sample is extracted, the condition monitor and
diagnosis module can compare the observed audio sample to an existing
library and provide the diagnosis for it, which can be classification or
other inspections for the audio recording. The system can be used to
identify faults based on sound recordings in industrial robot fault di-
agnosis [31].

In the manufacturing industry, ultrasonic sensors are widely used in
industrial automation for presence and distance detection of solids and
fluids. Ultrasonic sound is usually in the range of 20 kHz to 100 kHz,
which is far beyond the human ear audible range but it can still be
applied to audio based analysis systems. The classical application for
ultrasonic signal processing in the industrial environment is on
Condition Based Maintenance (CBM), which includes the following:
bearing inspection; testing gears/gearboxes; pumps; motors; steam trap
inspection; valve testing; detection/trending of cavitation; compressor
valve analysis; leak detection in pressure and vacuum systems such as
boilers, heat exchangers, condensers, chillers, tanks, pipes, hatches,
hydraulic systems, compressed air audits, specialty gas systems and
underground leaks; and testing for arcing and corona in electrical ap-
paratus [32].

3. Research methodology

As noted above, construction heavy equipment often presents dis-
tinct sound patterns while performing certain activities, and thus it is
possible to extract useful information about their activities by recording
and processing audio at construction jobsites. The proposed audio-
based framework begins with recording construction equipment using
commercially available audio recorders. The captured audio is then fed
into a signal enhancement algorithm to reduce background noise
commonly found at construction jobsites. After the enhancement, the
audio is then converted into a time-frequency representation using the
short-time Fourier transform (STFT). A support vector machine (SVM) is
then used to classify the STFT features at each time to identify different
sound patterns (corresponding to the various activities of each ma-
chine). The output of this classifier is then further processed using a
window filtering approach to identify windows of time corresponding
to different activities (Fig. 2). Each of these steps are described in

Fig. 1. Obtaining full coverage of a jobsite using computer vision techniques will require
a network of cameras with overlapping fields of views, such as the example shown here.

Table 1
Approximate data rates for different sensor modalities: sound, location (NMEA format),
and video.

Input type #Sensors Sampling rate Resolution Data rate

Sound 1 10 kHz 8 bit 10 kB/s
Location 10 12 kHz 800 bit 12 kB/s
Video 1 4608 kHz 8 bit 4608 kB/s
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further detail below.

3.1. Signal enhancement

The captured audio is assumed to contain the signals of interest
along with environmental and other background noise sources. This
noise will have a negative effect on identifying certain activity patterns;
thus, effective signal enhancement can have a significant impact on the
proposed procedure. If the level of enhancement is too low, the back-
ground noise will interfere with our signal of interest, while if the en-
hancement is too aggressive, our desired signal might be distorted. We
apply a signal enhancement algorithm developed by Rangachari and
Loizou [33] because it has been proven to be both effective and effi-
cient. Its performance is confirmed by various listening tests that in-
dicated significantly higher preference for this algorithm compared to
the other existing noise-estimation algorithms [33]. As shown in Fig. 3,
we can observe that the frequency pattern is more distinct in the de-
noised recording than the original recording. A key aspect of this al-
gorithm is that it can perform noise-estimation in highly non-stationary
noise environments such as what might be encountered at a construc-
tion jobsite. An estimate of the noise is continuously updated in every
frame using time-frequency smoothing factors computed based on
signal-presence probability in each frequency bin of the noisy spectrum.
More details about this algorithm can be found in Rangachari and
Loizou [33].

3.2. Time-frequency representation

The denoised audio signal is then converted to a time-frequency
representation using the short-time Fourier transform (STFT). The STFT
reveals the frequency content of a signal of local windows in time and
allows us to track this content as it changes over time. We use a
Hanning window with size 512, a 1024-point DFT (discrete Fourier
transform), and a 50% overlap (256 overlapped samples). The window
size is not critical but must be long enough to provide sufficient fre-
quency resolution; however, if it is too long, the temporal aspects of the
signal are blurred. The 512 sample met this criteria so we choose it. The
50% overlapping for Hanning window has the advantage that the sum
of the overlapping window functions is exactly one everywhere. The
constant sum implies a proper reconstruction of the signal after inverse
Fourier transform and summation of the overlapping windows. The
output of the STFT consists of both magnitude and phase, but for single
microphone recordings we discard the phase and consider only the
magnitude.

3.3. Classification via support vector machines

To identify various activities within a captured audio file, we use
techniques from machine learning to obtain models that characterize
the audio for different tasks for each piece of machinery. The learning
algorithm which we use in this research is the support vector machine
(SVM) algorithm [34]. SVMs works well for high dimensional data and
relatively few labelled data points [35]. The essential idea is to use
training data belonging to each of the two different classes (e.g., pro-
ductive activities versus non-productive activities) and to use this to
build a simple decision rule for classifying future data.

More concretely, we let (xi,yi), i=1,2,…,n denote the training data
where xi ∈ℝd is a d-dimensional feature vector and yi ∈{+1,−1} in-
dicates the class of xi. The SVM training procedure involves solving the
following optimization problem [36]:

∑+
=

C ξwmin 1
2ξb i

n

iw, ,

2

1

+ ≥ − = …

≥ = …

y k b ξ i n
ξ i n

w xs.t. ( ( , ) ) 1 for 1, 2, ,
0 for 1, 2, , .

i i i

i

Above, C ≥ 0 is a tradeoff parameter that controls overfitting, and k
(w,ξ) represents a kernel function which mathematically captures the
similarity between the vectors w and ξ. The solution to the SVM opti-
mization problem yields a vector w and an offset b from which we can
make future predictions via the simple decision rule given by

= +f k bx w x( ) sgn( ( , ) ).bw,

In our experiments, we use the radial basis function (RBF) kernel.
The most common choices for SVMs are linear kernel and RBF kernel.
We tested both kernels and found that the performance with RBF kernel
is better than linear kernel. The RBF kernel is given by

= − −′ ′k γx x x x( , ) exp ( ‖ ‖ ),2

where γ ≥ 0 is a bandwidth parameter which we must select.
To solve the SVM optimization problem, we use the LIBSVM

package in MATLAB [37]. To generate training data, we extract 10 to
20 s for each activity of interest (assigned labels of± 1 depending on
the activity). The parameters C and γ are selected by considering a log-
scale range from 2−6 to 25. (Note that we select the parameters in-
dependently for each machine.) We use 10-fold cross validation to se-
lect the appropriate values of C and γ. After training the SVMmodels for
each machine, we extract other segments from the audio files (selected
at random) as the testing data.

3.4. Window filtering

After training an SVM for each machine, we can produce a predicted
class for any window of the audio signal. This results in each time bin
being assigned a label— but in practice what is truly needed is the total
time period of the different activities. The time period for a specific
activity can last for seconds, but each second will have hundreds of time
bins. In addition, some activities manifest only briefly in the audio
signal, so a simple voting or median filtering could fail to catch such
activities. Therefore, to identify the time period and to smooth out local
fluctuations in the output labels, we apply a simple window filtering to
the predicted labels. The window filtering algorithm starts with a small
window scanning through the predicted labels in the time domain and
calculating the percentage for each activity. If the percentage for a
specific activity is higher than a set threshold, the window will be la-
belled with that activity. Thus, a threshold may be set to capture a brief
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Filtering
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Fig. 2. Overall audio-based activity classification system.
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Fig. 3. Comparison between original recording and denoised recording.
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Identify Different Activities: JD 270C Backhoe

Window size = [20,80]; Threshold = 0.54
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Fig. 5. Predicted Label for JD 270C Backhoe.

Fig. 4. The microphone array used for collecting audio files for this project (left) and placing audio recorders at a jobsite (right).
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Fig. 6. Comparison between Predicted label and Correct
label for JD 270C Backhoe.
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Identify Different Activities: Volvo L250G Wheelloader

Window size = [20,80]; Threshold = 0.54
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Fig. 7. Predicted Label for Volvo L250G Wheelloader.
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Fig. 8. Comparison between Predicted Label and
Correct Label for Volvo L250G Wheelloader.

Identify Different Activities: JCB 3CX mini excavator

Window size = [20,80]; Threshold = 0.54
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Fig. 9. Predicted Label for JCB 3CX mini excavator.
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Fig. 10. Comparison between Predicted Label and
Correct Label for JCB 3CX mini excavator.

Identify Different Activities: CAT D5C Dozer

Window size = [20,50]; Threshold = 0.54
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Fig. 11. Predicted Label for CAT D5C Dozer.
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Fig. 12. Comparison between Predicted Label and
Correct Label for CAT D5C Dozer.
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Identify Different Activities: CAT 322C

Window size = [20,50]; Threshold = 0.54
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Fig. 13. Predicted Label for CAT 322C with Hydraulic
Hammer.

Time (s)

P
r
e
d

i
c
t
e
d

 
A

c
t
i
v
i
t
y

CAT 322C: "Predicted Label"

Time (s)

P
r
e
d

i
c
t
e
d

 
A

c
t
i
v
i
t
y

CAT 322C: "Correct Label"

0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90

Fig. 14. Comparison between Predicted Label and
Correct Label for CAT 322C with Hydraulic Hammer.

Identify Different Activities: Volvo A30G

Window size = [20,50]; Threshold = 0.54
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Fig. 15. Predicted Label for Volvo A30G Dumper.
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Fig. 16. Comparison between Predicted Label and Correct
Label for Volvo A30G Dumper.

Identify Different Activities: Volvo EC700B

Window size = [20,80]; Threshold = 0.54
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Fig. 17. Predicted Label for Volvo EC700B breaking up
asphalt.
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Fig. 18. Comparison between Predicted Label and
Correct Label for Volvo EC700B breaking up asphalt.
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impact sound or a sustained sound according to the activity. The choice
of a threshold is done by experiments, and we found that 0.52 to 0.54
will be a practical choice for every case. Using different threshold will
affect the performance of window filtering procedure. After scanning
through all the predicted labels, the procedure is repeated using the
larger window applied to the outputs of the smaller windows. The size
of the window will vary in different cases, but in general the small
window can be set as a quarter second and the large window can be a
second or 2 s As shown in Fig. 5, “Window size [20, 80]” indicates we
use a small window that contains 20 time bins and a larger window
with 80 time bins. Filtering by the larger window can improve the

output result smoothed by the small window. After performing the
window filtering, we will make predicted labels labelled in windows
rather than time bins.

3.5. Scope of research and limitations

While implementing the proposed audio-based action analysis
system, the following assumptions/limitations need to be taken into
account:

1. The proposed system is only applicable for construction machines
that generate discrete sound patterns during their routine opera-
tions. Obviously certain types of equipment, such as tower cranes
and graders, do not fall into this category and the system is not able
to analyze their activities.

2. At this stage, the system is capable of classifying operations into two
categories: active or productive (known as major activity within the
paper) and passive or non-productive (known as minor activity).
Minor activities include items such as swinging, maneuvering and
moving. In order to fully analyze the operations, minor activities
should also be classified into sub-categories. The current system is

Identify Different Activities: Hitachi Zaxis 470 excavator
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Fig. 19. Predicted Label for Hitachi Zaxis 470 excavator.
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Fig. 20. Comparison between Predicted Label and
Correct Label for Hitachi Zaxis 470 excavator.

Table 2
Confusion matrix. JD 270C Backhoe.

Actual label

Act 1 Act 2
Predicted label Act 1 0.8341 0.1679

Act 2 0.1659 0.8521
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not able to differentiate between those sub-categories and a further
study regarding this issue will be part of the future research plan.

3. Although we believe that sound recording devices (microphones)
are more robust against environmental factors (compared to cam-
eras), a number of factors still can affect the performance of the
system. Existence of sound barriers or objects such as massive RC
blocks might affect the audio recording process. Studying the im-
pacts of those elements is not within the scope of this work. In this
research, we try to record audio files in open construction jobsite
areas with minimal acoustical barriers.

4. The focus of this research is on activity analysis of single machines.
To achieve this goal, smaller jobsites with only one active machine,
or single machines operating relatively far from other machines
generating noise are ideal. In the future, the authors will study the
case of activity analysis of several machines operating simulta-
neously and in a noisy construction jobsite.

5. In this study, microphones are installed in the jobsite and in the
proximity of the equipment. The microphone is assumed to be ap-
proximately “close” enough to the target machine. A more detailed
study on the impacts of hardware settings and layout (location,
distance, orientation, and number of microphones) is not within the
scope of this research.

4. Experimental setup and results

4.1. Experimental setup

In order to evaluate the performance of the proposed system, 11
different pieces of construction machines operating at various jobsites
has been selected as case studies: 1) JCB 3CX mini excavator, 2) JD
270C Backhoe, 3) Volvo L250G Wheel Loader, 4) CAT D5C Dozer, 5)
CAT 322C with Hydraulic Hammer, 6) Volvo A30G Dumper, 7) Volvo
EC700B breaking up asphalt, 8) Hitachi Zaxis 470, 9) CAT 320E
Excavator, 10) Ingersoll Rand SD-25F Compactor, and 11) John Deere
700J Dozer. We present our experiment results for first eight machines
in this paper.

Each piece of machine was carefully monitored and the generated
sounds while performing routine tasks were captured using a com-
mercially available recorder (Fig. 4: Tascam DR-05 2 GB; costs: around
$100). In parallel to recording generated sound patterns, a smart phone
was used to video tape the entire scene. The captured video files will be
used later to manually label the audio file and classify different activ-
ities and thus, generate the validation benchmark (or ground truth
data). Next, each audio file was manually labelled based on various
activities took place during the recording time. The label here will be
used as correct label in the experimental results. Construction heavy
equipment usually perform one major task (digging, loading, breaking,
etc.) and one or more minor tasks (maneuvering, swinging, moving,
etc.) in each cycle, so we classified each audio file based on two ac-
tivities: major and minor (or activity 1 and activity 2). For example, the
major activity for JD 270C Backhoe is crushing. Each audio file was
then sent through the audio processing pipeline and divided into ac-
tivities 1 and 2. Finally, the performance of the algorithm for each case
study has been compared to manually labelled files. The comparison
results are depicted in the following tables and figures.

4.2. Experimental results

In the tables and figures, the label “Act 1” represents the major
activity, while “Act 2” illustrates the minor activities. Figs. 5–20 illus-
trate the predicted activities based on the STFT spectrogram and the
comparison between predicted and actual labels. To quantify the ac-
curacy of the proposed system, the confusion matrices for each equip-
ment were formed (Tables 2–9). The confusion matrix shows how the
predicted labels match with the actual labels. The figures illustrate that
our proposed SVM-based approach can detect specific audio patterns in

Table 3
Confusion matrix. Volvo L250G Wheelloader.

Actual label

Act 1 Act 2
Predicted label Act 1 0.8003 0.0981

Act 2 0.1997 0.9019

Table 4
Confusion matrix. JCB 3CX mini excavator.

Actual label

Act 1 Act 2
Predicted label Act 1 0.8326 0.0218

Act 2 0.1674 0.9782

Table 5
Confusion matrix. CAT D5C Dozer.

Actual label

Act 1 Act 2
Predicted label Act 1 0.8490 0.0477

Act 2 0.1510 0.9523

Table 6
Confusion matrix. CAT 322C with Hydraulic Hammer.

Actual label

Act 1 Act 2
Predicted label Act 1 0.9807 0.0996

Act 2 0.0193 0.9004

Table 7
Confusion matrix. Volvo A30G Dumper.

Actual label

Act 1 Act 2
Predicted label Act 1 0.1775 0.4322

Act 2 0.8225 0.5668

Table 8
Confusion matrix. Volvo EC700B breaking up asphalt.

Actual label

Act 1 Act 2
Predicted label Act 1 0.3817 0.1277

Act 2 0.6183 0.8723

Table 9
Confusion matrix. Hitachi Zaxis 470 excavator.

Actual label

Act 1 Act 2
Predicted label Act 1 0.8569 0.0738

Act 2 0.1431 0.9262
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the STFT domain. For example, the blue line in Fig. 5 indicates label for
“Act 1” predicted by SVMs, which is the major activity for JD 270C
Backhoe, while the black line indicates the predicted minor activity. We
plotted two lines with different height only to make different predicted
activities labels visually separated. It clearly shows that “Act 1” and
“Act 2” present a large difference in the STFT domain. The similar re-
sults can be seen in the figures for other construction equipment, such
as Figs. 7, 13, and 19. Another way to visually evaluate the performance
of the system is throughout the comparison charts as shown in Figs. 6,
8, 10, 12, 14, 16, 18, and 20. Tables 2–9 indicate that the performance
of the proposed system for automatically recognizing activities of single
machines is very promising. Generally, the proposed system can have
over 80% even 85% accuracy identifying different activities. For JCB
3CX mini excavator and CAT 322C with hydraulic hammer, as shown in
Tables 4 and 6, “Act 1” and “Act 2” have strongly different patterns in
their STFTs, thus the identification accuracy can be over 90%.

The proposed audio-based framework provides an efficient way to
identify different activities for construction equipments. The machine
learning algorithm needs only a few seconds of recording to obtain
sufficient data to construct a model for learning audio patterns. We do
not need a large database compared to neural network based machine
learning method to implement the identification. Also, the machine
learning model can learn the audio patterns for each activity without
manual analysis of the audio recording. Thus, it will not be highly
dependent on the database of pure activity recordings. We only need
relatively small amount of recordings to construct the identifying
system.

5. Discussion and future work

Recognizing, tracking and monitoring of construction equipment
activities is the first step for productivity assessment of construction
jobsites. Despite the significance of this task, there is no automated
system for efficiently recognizing and monitoring operations of con-
struction machines at jobsites. To tackle this issue, the authors proposed
an innovative audio-based system for activity analysis of single ma-
chines performing various tasks. As illustrated in the previous sections,
collecting and processing audio files are computationally efficient, non-
intrusive, and inexpensive. The presented system was implemented and
evaluated using several datasets from various construction jobsites and
the obtained results are very satisfying. In addition, the following les-
sons have been learned from this study:

1. The presented framework is novel as it is the first research plan that
attempts to introduce audio as an alternative source of information
to recognize and log construction activities at a jobsite.

2. The results of implementing the suggested framework for activity
analysis of construction heavy equipment are very promising. In
particular, the implemented signal enhancement algorithm was able
to efficiently separate the major audio signal and remove the
background noise.

3. Although the system works acceptably well for the majority of
construction heavy equipment tested, there are still a few machines
that do not generate distinct sound patterns while performing rou-
tine tasks. Graders are examples of this category of machines.

4. For specific types of equipment, including Volvo A30G Dumper
(Fig. 15) and Volvo EC700B breaking up asphalt (Fig. 17), the major
activity does not have a dominant and specific pattern in STFT do-
main, thus the performance of identifying “Act 1” and “Act 2” is low.
To achieve better identification performance – or, to avoid the bad
result presented in Volvo A30G (Figs. 15 and 16 and Table 7) – we
believe that we need to also include phase information (which was
not used in this system). This enhanced algorithm will be left for
future work.

5. Assuming that the same models of equipment, generates very similar
sound patterns during similar operations, we believe that the results

could be generalized and the system works for the other same model
machines. At this stage, we do not have enough datasets to prove
this claim though and this case will be explored in more details in
the future.

Future extension of this research study will include activity analysis
of multiple machines using single or multiple microphones, and even-
tually, acoustical modeling of the entire construction jobsite. The au-
thors also intend to use the audio signal processing system parallel to
other activity analysis techniques (e.g., computer vision) to enhance the
generated results and cover a broader range of applications. A detailed,
quantitative comparison study between the proposed audio-based
model and other available methods (MEMS sensors and computer vision
techniques) is another item needs to be considered as part of the future
research plan.
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