
CLEANING UP TOXIC WASTE: REMOVING NEFARIOUS CONTRIBUTIONS TO
RECOMMENDATION SYSTEMS

Adam Charles, Ali Ahmed, Aditya Joshi, Stephen Conover, Christopher Turnes, Mark Davenport

Georgia Institute of Technology
Electrical and Computer Engineering

ABSTRACT

Recommendation systems are becoming increasingly im-
portant, as evidenced by the popularity of the Netflix prize
and the sophistication of various online shopping systems.
With this increase in interest, a new problem of nefarious or
false rankings that compromise a recommendation system’s
integrity has surfaced. We consider such purposefully erro-
neous rankings to be a form of “toxic waste,” corrupting the
performance of the underlying algorithm. In this paper, we
propose an adaptive reweighted algorithm as a possible ap-
proach towards correcting this problem. Our algorithm re-
lies on finding a low-rank-plus-sparse decomposition of the
recommendation matrix, where the adaptation of the weights
aids in rejecting the malicious contributions. Simulations sug-
gest that our algorithm converges fairly rapidly and produces
accurate results.

Index Terms— Adaptive optimization, sparsity, conver-
gence, toxic waste

1. INTRODUCTION

With expanding storage capabilities, commercial enterprises
are gaining access to large amounts of data on consumer pref-
erences. Accordingly, there has been significant interest in de-
veloping strong recommendation systems for product market-
ing. This increased attention has led to a flurry of innovation,
a good percentage of which was motivated by the celebrated
Netflix prize [1].

Unfortunately, the success of algorithms for recommen-
dation systems has, on occasion, drawn unwanted attention.
There are documented instances of enterprises manipulating
rating systems to increase the appeal of their products [2, 3,
4]. We refer to the data from such contributions as “toxic
waste,” as it is in some sense worse than more standard er-
ror sources. While normal errors may cause mild ambiguity,
these errors not only increase the required storage but also ac-
tively contribute misinformation to the system. Toxic waste
worsens the performance of recommendation systems at no
fault of their underlying algorithms.

In this paper, we explain how such nefarious contributions
may be mitigated through statistical techniques. It is well

known that recommendation systems are accurately modeled
as having two primary components: one that is low-rank, the
other sparse. Our approach models the aggregate matrix of
product rankings in precisely this manner, with the corrupting
agents affecting only a sparse subset of the rows of the sys-
tem (and therefore contributing to the sparse component of the
decomposition). By identifying this subset with an adaptive
algorithm, we are able to remove its contribution and improve
the quality of the data fed to the recommendation system.

2. BACKGROUND

The algorithm we propose combines the ideas of two exist-
ing methods. To obtain the desired low-rank-plus-sparse de-
composition of the recommendation matrix, we solve a spe-
cific optimization problem known as Principal Components
Pursuit (PCP). This problem may be solved with an optimiza-
tion tool known as the Alternating Directions (AD) algorithm.
Our innovation is a variation on the optimization problem that
incorporates an adaptive reweighting process, allowing us to
more selectively narrow in on the components corresponding
to toxic waste.

2.1. Low-rank-plus-sparse decompositions

The decomposition of a matrix into sparse and low-rank com-
ponents is an approach with well established precedence [5,
6]. For a given matrix Y ∈ Rn1×n2 , the decomposition into
these components is written as

Y = L0 + S0, (1)

where L0 is the rank-r component (with r small) and S0 is
sparse. Let the singular value decomposition (SVD) of L0 be
written as

L0 = UΣV ∗,

withU : n1× r, Σ : r× r, and V : n2× r. Following estab-
lished results, we assume that the SVD obeys three coherence
conditions:
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where we have used the norm ‖Y ‖∞ = maxij |Xij |. The
coherence parameter µ quantifies the dispersion of the sin-
gular vectors [7], and is O(1) when the vectors are perfectly
spread-out. The coherence conditions effectively ensure that
the low-rank matrix is non-sparse, as this would create ambi-
guity in the decomposition.

Theorem 1 of [6] states that when the sparsity pattern in
the matrix S0 is selected uniformly at random1, L0 obeys the
incoherence assumptions of (2) and (3). As a result, we can
obtain an exact recovery of the components of the decompo-
sition by solving the PCP optimization program

minimize ‖L‖∗ + λ‖S‖1
subject to L+ S = Y

with regularity parameter λ = (max(n1, n2))
−1/2. In other

words, the matrices L̂ and Ŝ returned by the optimization
program will exactly equal L0 and S0 so long as

rank(L0) ≤ c1 min(n1, n2)

µ log2(max(n1, n2))

and
sparsity(S) ≤ c2n1n2

with high probability, where c1 and c2 are fixed constants.

2.2. Reweighted `1 Optimization

In our work we seek to adapt the parameters of the PCP algo-
rithm to better hone in on malicious corruption. To this end,
we can borrow techniques developed for similar optimization
problems in sparse signal recovery. The goal of traditional
sparse signal recovery is to restore a signal y from measure-
ments z collected as

z = Φy + ε,

where Φ is a measurement matrix (usually taken to be ran-
dom), ε is the measurement error, and y is assumed to be
sparse. When this is the case, y can be recovered by solving
the `1-regularized least-squares problem

ŷ = arg min
y
‖z −Φy‖22 + λ‖y‖1, (4)

where λ is a parameter that controls the trade-off between
the sparsity of the solution and the measurement fidelity [8].
While this parameter is usually assumed to be known a priori,
a growing body of literature suggests that it should instead be
adaptively selected [9, 10, 11, 12].

In particular, results on reweighted `1 algorithms have
shown that recovery from compressive measurements can be

1This assumption ensures the sparse matrix is unlikely to be low-rank.

improved by defining an adaptable trade-off parameter for
each element of the signal y [9]. Under this approach, the
optimization problem in (4) is replaced with a series of sim-
ilar problems where the λ parameters are adapted at each it-
eration. The algorithm alternates between updating the signal
estimate by solving

ŷ = arg min
y
‖z −Φy‖22 + ‖Λy‖1,

where Λ is the diagonal matrix containing the λ parameters
for each signal element, and adapting the parameters as

λi =
β

|ŷi|+ γ
,

where α and β control the distribution of λ. As the algorithm
progresses, it “hones in” on active coefficients by consistently
weighting active coefficients less heavily and smaller coeffi-
cients more heavily.

3. ADAPTIVE PCP

3.1. General Approach

For our model, the contributions of toxic waste elements are
reflected in the matrix S0, which consists of a few non-zero
entries spread out over a sparse unknown subset of rows. In
effect, we assume corruptions of the low-rank data L0 are
present only on a small subset of the rows of the matrix Y .
Under this assumption, the corruptions are not necessarily
sparse across the rows in which they reside, but occur on a
sparse subset of the system’s rows. Our goal is to decompose
Y as in (1) to exploit this structure, using the sparse S0 to
realize the error sources.

To achieve this goal, we present a novel algorithm that
identifies systematic behavior across rows that deviates in an
obvious manner from the norm. We can draw upon the ideas
taken from reweighted `1 algorithms to adapt the parameters
for each row of S0 in our optimization procedure. This adap-
tation will ensure that the algorithm will be able to extract the
contributions of the malicious agents.

In our approach, we modify the PCP formulation to adapt
the parameters for each row independently. We use a sim-
ilar reweighted approach, where we alternately seek a row-
weighted PCP decomposition

minimize ‖L‖∗ + |ΛS‖1
subject to L+ S = Y ,

(where the matrix Λ in this program is a diagonal weighting
matrix indicating how toxic we believe each row of S0 to be),
and an adaptive step

Λi,i =
β

‖S(i)‖1 + γ
, (5)



where S(i) represents the ith row of S. This adaptive step
looks at the energy in each column of S and re-assigns a pa-
rameter that increases or decreases the likelihood that this row
is considered toxic.

3.2. Implementation

We implement our algorithm via a modified version of AD or
the augmented Lagrange-multiplier method. The basic AD al-
gorithm and its related extensions have been thoroughly stud-
ied over the years [13, 14]. Most notably for our purposes,
AD was used in [6] to obtain the basic low-rank-plus-sparse
decomposition of (1).

The algorithm we propose uses a variation of this ap-
proach to solve the row-weighted PCP optimization, followed
by the analytic update in (5) to identify and separate the con-
tributions of nefarious agents. The algorithm minimizes the
Lagrangian

L(L,S,Z) = ‖L‖∗ + ‖ΛS‖1 +
α

2
‖Y −L− S‖2F

+ < Z,Y −L− S >
(6)

by alternately minimizing the low-rank and sparse compo-
nents. In (6), Z is the Lagrangian multiplier, while Λ is the
re-weighting vector that adjusts the weights applied to rows
of S based on the energy they contain. The alternating opti-
mization sequentially minimizes L(L,S,Z) over L and S.

The latter minimization is given by the well known soft
thresholding operator

Γτi(Rij) = sgn(Rij)max(|Rij | − τi, 0) ∀i, j,

where τi is the threshold for the ith row. Similarly, the mini-
mization over L is obtained by soft thresholding the singular
values of a given matrix, which is the proximal operator for
the nuclear norm. Assuming the SVD ofR is given as before,
then

Dτ (R) = UTτ (Σ)V ∗

where

Tτ (Σ) = max(Σ− τI, 0)

is an element-wise thresholding of Σ.
In Algorithm 1, S converges to an approximation of the

sparse error term while L converges to the required low rank
matrix.

The convergence of the basic AD algorithm was demon-
strated in [14]. Therefore, we know that for any reasonable
choice of Λ in the outer loop of Algorithm 1, the inner loop
will converge. As a result, our adaptive algorithm is expected
to be stable, a notion that is reinforced by the knowledge that
similar reweighted schemes converge in the vector case.

Algorithm 1 Principal Component Pursuit by Adaptive
Alternating Directions

Initialize: Λ = Λ0,S0 = Z0 = 0, and α, β, γ > 0
while not converged do

while not converged do
compute Lk+1 = Dα−1(Y − Sk + α−1Zk);
compute Sk+1 = ΓΛα−1(Y −Lk+1 + α−1Zk);
compute Zk+1 = Zk + α(Y −Lk+1 − Sk+1);

end while
Update: Λ = β/(‖S(i)‖1 + γ).

end while
Output: L,S.

4. SIMULATIONS

To test our algorithm, we generated a series of 100 × 200
rank-five matrices. We then added toxic waste by selecting
ten rows at random and generating errors on half of the val-
ues in those rows. Next, we introduce additional sparse and
Gaussian errors to the rest of the matrix, which account for the
standard structure of recommendation systems and for minor
systematic errors.

With the corrupted systems generated, we recovered the
low-rank-plus-sparse decomposition of the matrix using both
standard PCP optimization and by adapting λ for each row of
the sparse component. Each optimization problem was solved
with AD outlined in Algorithm 1. The trade-off parameter λ
for standard PCP was set to 0.1, while for the reweighted ver-
sion we set the parameters β = 1.5 and γ = 0.01. Under this
setup, we find that we need at most ten iterations for adequate
convergence.

Our initial results demonstrate that by adaptively updat-
ing the sparse matrix component, our algorithm steers away
from spurious sparse errors and narrows in on more system-
atic deviations corresponding to malicious contributions. Fig-
ure 1 depicts the aggregate matrix error (i.e., toxic waste and
spurious sparse errors together), the identification of toxic
waste using our adaptive algorithm, and the identification us-
ing standard AD for an example matrix. The addition of adap-
tivity to PCP allows our algorithm to better differentiate ne-
farious contributions from spurious errors.

Since the ultimate goal is to detect sources who con-
tribute misinformation, we then fed the results of the matrix-
decomposition algorithms into a detector that compares the
energy in each row of the sparse matrix component against a
specified threshold. By sweeping the threshold over a range
of 0 to 80, we computed estimates of the probabilities of
missed detection and of false alarm, which are plotted in
Figure 2 as a function of the decision threshold value. For
small thresholds, the probability of false alarm is significantly
smaller for the adaptive algorithm than for standard PCP. As
the threshold increases, the false alarm probability drops
to zero and the probability of detection decreases. While



True Adaptive Non−adaptive

Fig. 1. (Left) The total deviation of a dataset from a low-rank model can contain a mixture of sparse noise and small Gaussian
deviations in addition to malicious corruption. (Middle) Adaptive PCP can focus on the malicious corruption, ignoring other,
natural, deviations. (Right) Standard PCP has no mechanism to differentiate the various errors.
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Fig. 2. The goal of the adaptive PCP scheme is to identify ne-
farious activity while ignoring natural deviations. (Top) The
probability of false alarms (claiming someone innocent is act-
ing maliciously) for a given decision threshold is lower for
adaptive PCP over standard PCP. (Bottom) The probability of
detection falls quickly for standard PCP while adaptive PCP
retains very high probability of detection.

the probability of detection decreases for both methods, this
change is orders of magnitude smaller for the adaptive algo-
rithm. Note that adaptive PCP reaches a minimal probability
of false alarm while still retaining a very high probability of
detection, which is not the case for standard PCP.

5. CONCLUSIONS AND FUTURE WORK

This work outlines an adaptive algorithm that seeks to remove
malicious erroneous information from datasets. The corrup-
tion is not considered to be a sparse matrix with non-zero en-
tries supported at random locations, but rather is assumed to
occur in a structured pattern. Our results indicate that we can
“clean” the low-rank component from this structured pattern
of errors using an adaptive version of PCP. Moreover, empir-
ical results suggest that our optimization converges in rela-
tively few iterations. We implemented our algorithm using
efficient solvers and our result indicate the effectiveness of
our approach, especially in comparison to the standard for-
mulation of PCP.

In practical scenarios, we might not have complete in-
formation about the entries of matrix Y ; i.e., only a partial
set of the entries of Y may be known. Given a generic set
of the entries of Y , we can fill in the missing entries using
nuclear norm minimization under some incoherence assump-
tions on Y . In addition, we can also decompose matrix Y
into low-rank and sparse members with this partial informa-
tion. The matrix decomposition into structured sparse and
low-rank components can also be obtained from the partial
information using our adaptive PCP approach.
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