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Abstract. In this paper we consider the related problems of ranking and of recovering a matrix
of pairwise comparisons from binary observations. We describe a näıve adaptation of the one-bit
matrix completion framework, but then note that additional constraints that arise in the context of
ranking allows us to replace nuclear norm minimization with a more direct approach. This ultimately
leads to a novel viewpoint on a classic approach to the ranking problem. Both theoretical and
experimental results show that this simplified approach to recovering a pairwise comparison matrix
performs significantly better than the näıve approach.
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1. Introduction. The problem of ranking a set of items based only on compar-
isons between pairs of items arises in a wide range of applications. The items could be
consumer products, sports teams, tweets or online forum comments, candidate drug
therapies, job applications, academic papers or proposals, or any other collection of
objects or courses of action. In this paper we investigate the connection between
ranking and the problem of recovering a low-rank matrix from an incomplete set of
observations, or matrix completion [1]. To see the connection between these two prob-
lems, assume that each of the n items to be ranked can be assigned a numerical rating
(or score) ri ∈ R and that item i is preferred to item j if ri > rj . These ratings taken
together form the rating vector r ∈ Rn. Next consider the matrix M ∈ Rn×n in which
each element Mij represents the difference between the ratings for items i and j, i.e.,
Mij = ri − rj . Equivalently, we can write M = reT − erT , where e = [1, 1, . . . , 1]T .

Clearly, given the matrix M we could directly recover the vector r, giving us
a rank-ordered list of all items. However, in practice we rarely have access to the
matrix M . Obtaining this matrix would require comparisons between every possible
pair of items, which can be prohibitive in practice for even moderate sized n. For
example, in constructing a ranking of sports teams, we can rarely expect every team
to play every other possible team. Moreover, in most settings the outcomes of these
comparisons will be extremely noisy and are often highly “quantized”—we may only
observe which team wins, and have no strict assurance that the winning team was in
fact the superior one. Similar problems arise whenever the comparisons are the result
of human judgements, which can be notoriously unreliable and may only tell us which
of two items was preferred. In this paper we consider the question of whether the
underlying matrix M can be recovered from such noisy one-bit observations when the
observations are potentially highly incomplete. We approach the problem from the
perspective of one-bit matrix completion, which asserts that since the matrix M is
low-rank, we should be able to recover M accurately via a simple convex program [2].

In the remainder of this paper, we will first review the theory of one-bit matrix
completion and describe its implications in the context of ranking. By imposing
additional constraints, we obtain improved theoretical results for an algorithm that
turns out to be essentially equivalent to a classical approach to ranking. We conclude
with a set of experiments that illustrate the performance of our proposed approach.
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2. One-Bit Matrix Completion. We begin with a brief overview of the one-
bit matrix completion framework. Suppose that Y denotes a complete set of noisy,
binary comparisons given by

Yij =

{
+1 (item i preferred) with probability f(Mij)

−1 (item j preferred) with probability 1− f(Mij)
(2.1)

where f(Mi,j) = P (Mij > 0). In our context, this corresponds to the probability that
item i is preferred to item j, and the choice of f would determine the chance that the
outcomes are “upsets” with respect to the underlying ratings. In this paper we will
focus on the case where f is given by the standard logistic function f(x) = (1+e−x)−1,
but other natural choices are also possible (see [2]). In the one-bit matrix completion
setting, we assume that we are able to observe Y on a subset of indices indexed by
Ω. In this case, if we let Ω+ denote the subset of Ω where Yij = +1 and similarly for
Ω−, then the log-likelihood function is given by

FΩ(X) =
∑

(i,j)∈Ω+

log f(Xij) +
∑

(i,j)∈Ω−

log f(1−Xij). (2.2)

If the underlying matrix M has rank s and ‖M‖∞ ≤ α, then the approach advocated
in [2] is to set

M̂ = arg max
X

FΩ(X) subject to ‖X‖∗ ≤ αn
√
s and ‖X‖∞ ≤ α. (2.3)

In the case where M = reT − erT , we have that s = 2, and hence we obtain the

following bound on ‖M − M̂‖F as a special case of Theorem 1 in [2].
Theorem 2.1. Let f(x) = (1 + e−x)−1 and suppose that we obtain observations

of the form in (2.1) for indices (i, j) ∈ Ω, where Ω is a set of m ≥ 4n log n elements
chosen uniformly at random and M = reT − erT with ri ∈ [0, ρ] for i = 1, . . . , n.
Then the solution to (2.3) with α = ρ, s = 2 will satisfy

1

n2
‖M − M̂‖2F ≤ C1ρ

√
n

m
,

with probability at least 1− C2/n, where C1 and C2 are absolute constants.
Note that the requirement that m = O(n log n) is not a particularly strong as-

sumption since as a consequence of the Coupon collector problem we need at least
n log n random observations just to ensure that we obtain at least one comparison per

item in our set. Next observe that from the estimate M̂ , the rating vector r can be
easily estimated (up to an order-preserving affine shift) via

r =
(M̂ − M̂

T
)e

2n
. (2.4)

This essentially corresponds to the well-known Borda count, and it is not difficult to
show (e.g., see [4, 5]) that the r defined in (2.4) satisfies

r = arg min
r

∥∥ (reT − erT
)
− M̂

∥∥
F
.

This is certainly one viable approach. However, this näıve application of generic
matrix completion techniques ignores the fact that in this specific context, the matrix
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M has considerable additional structure beyond having low rank, and it may be
possible to leverage this structure to obtain improved results. For example, in the
context of rank aggregation (but without quantized measurements), [4] considers a
method that incorporates the requirement that M is skew-symmetric directly as a
constraint in the recovery algorithm. This seems more natural than recovering a

generic M̂ and then after the fact estimating a skew-symmetric approximation to

M̂ as in the approach described above. Inspired by [4], we will now consider an
alternative approach to adapting the one-bit matrix completion framework to the
ranking problem.

3. An Alternative Approach. We begin by noting that when X = xeT −exT

we can rewrite the log likelihood function in (2.2) as

FΩ(x) =
∑

(i,j)∈Ω+

log f(xi − xj) +
∑

(i,j)∈Ω−

log f(1− (xi − xj)). (3.1)

Next we note that in the case of the logistic model (or any other symmetric distribu-
tion) we have log f(xi − xj) = log(1 − f(xj − xi)). Thus, since whenever (i, j) ∈ Ω+

we automatically have (j, i) ∈ Ω−, in this case we can reduce (3.1) to simply FΩ(x) =
2FΩ+(x), where

FΩ+(x) =
∑

(i,j)∈Ω+

log f(xi − xj). (3.2)

Finally, if we allow Ω to be a multiset where a pair (i, j) can appear multiple times
(i.e., we allow for repeated comparisons between a pair of objects), then we can define
Aij = |{(i, j) ∈ Ω+}| and consider

FΩ+(x) =
∑
(i,j)

Aij log f(xi − xj). (3.3)

We now consider the solution to the following optimization problem:

r̂ = arg max
x

FΩ+(x) subject to xi ≥ 0 for i = 1, . . . , n and ‖x‖1 ≤ ρ. (3.4)

We can obtain M̂ from r̂ via M̂ = r̂eT − er̂T . The solution to this optimization
problem will satisfy the following guarantee.

Theorem 3.1. Let f(x) = (1 + e−x)−1 and suppose that we obtain observations
of the form in (2.1) for indices (i, j) ∈ Ω, where Ω is a set of m ≥ 2n log n pairs of
items chosen uniformly at random and M = reT − erT with ri ≥ 0 for i = 1, . . . , n
and ‖r‖1 ≤ ρ. Then with probability at least 1 − C1/n, the solution to (3.4) with

M̂ = r̂eT − er̂T will satisfy

1(
n
2

)‖M − M̂‖2F ≤ C2ρ

√
1

m
,

where C1 and C2 are absolute constants.
Proof. The proof follows the same structure as the proof of Theorem 1 in [2], so

we provide only an outline of the proof here. The proof begins by showing that there
exists a constant C such that

‖M − M̂‖2F ≤ C
∑
i,j

D(f(Mij)‖f(M̂ij)), (3.5)
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where D(·‖·) denotes the Kullback-Leibler divergence. Next we define

G = {x ∈ Rn : xi ≥ 0 for i = 1, . . . , n and ‖x‖1 ≤ ρ} .

Using the same argument as in [2] one can show that if we define H(x) = FΩ+(x)−
EFΩ+(x), where the expectation is over both the choice of Ω and the outcomes Y ,
then as a consequence of the fact that FΩ+(r̂) ≥ FΩ+(r) we have

1(
n
2

) ∑
i,j

D(f(Mij)‖f(M̂ij)) ≤
2

m
sup
x∈G
|H(x)|.

Combining this with (3.5) and Lemma 3.2 establishes the result with C2 = C · C0.
Lemma 3.2. There exist constants C0 and C1 such that

P

(
sup
x∈G
|H(x)| ≥ C0ρ

√
m+ n log n

)
≤ C1

n
.

Proof. Again, the proof follows the same structure as the proof of Lemma 1 in [2],
so we provide only a rough outline. We begin by noting that as a consequence of
Markov’s inequality we have that for h > 0

P

(
sup
x∈G
|H(x)| ≥ C0ρ

√
m+ n log n

)
≤

E
[
supx∈G |H(x)|h

](
C0ρ
√
m+ n log n

)h (3.6)

Following the same line of reasoning as in [2], one can show that

E
[

sup
x∈G
|H(x)|h

]
≤ 4h‖xeT − exT ‖h∗E

[
‖E ◦A‖h

]
, (3.7)

where E is a matrix with i.i.d. Rademacher random variables. Using the same argu-
ments as in [2] we can show that there exists a constant c such that

E
[
‖E ◦A‖h

]
≤

(
c

√
m+ n log n

n

)h

. (3.8)

We also have that

‖xeT − exT ‖∗ ≤ ‖xeT ‖∗ + ‖exT ‖∗ = 2
√
n‖x‖2 ≤ 2

√
nρ. (3.9)

Combining (3.7), (3.8), and (3.9), we obtain

E
[

sup
x∈G
|H(x)|h

]
≤
(

8cρ
√
m+ n log n

)h
.

Plugging this in to (3.6) and setting h = log n establishes the lemma.

4. Connection to Previous Approaches to Ranking. Using Aij as previ-
ously defined, we can now write the log likelihood as

FΩ+(r) =
∑
i<j

Aij log(f(ri − rj)) +Aji log(f(rj − ri)). (4.1)
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In the case of the logistic function, we have

FΩ+(r) = −
∑
i<j

Aij log(e(rj−ri) + 1) +Aji log(e(ri−rj) + 1)

=
∑
i<j

log
[
(erj/eri + 1)−Aij (eri/erj + 1)−Aji

]
.

(4.2)

Up to a set of monotonic transformations in r, our model is actually equivalent to the
classic Bradley-Terry-Luce model, which has been studied extensively in the context
of ranking:

FΩ+(w = er) = log
∏
i<j

(
wi

wi + wj

)Aij
(

wj

wj + wi

)Aji

. (4.3)

From this perspective, one can view our proposed algorithm as only a slight variant of
a classic approach described in [3], with the difference being in the particular form of
our constraints on r. Specifically, both our approach as well as the approach described
in [3] can be expressed as

maximize FΩ+(w) subject to h(w) = 0. (4.4)

The choice of constraints is somewhat arbitrary, but sensible examples include h(w) =
1−

∑n
i=1 wi for wi > 0 as in [3] and h(er) = 1−

∑n
i=1 ri for ri ≥ 0 as in Section 3 .

5. Synthetic Simulation. To evaluate our approach, we perform a set of nu-
merical simulations that compares the performance of our proposed approach with
the näıve adaptation of one-bit matrix completion on a synthetic example where the
true underlying ratings are known. In this experiment, we generate an evenly spaced
ranking vector r ∈ Rn such that ‖r̂‖1 =

∑
i ri = ρ. We observe random match-ups

between items and these binary measurements are subjected to noise according to the
logistic model. Both the number of measurements and the measurement noise are
varied. The estimated ranking vector r̂ is computed using the SPGL1 [6] solver:

To compare the fidelity of reconstruction, we use a distance Kd : Rn×Rn → [0, 1]
which counts the number of discordant pairs (discrepancies between ranking lists)
relative to the total number of pairs of items. Discordant pairs can be thought of
thought of as how many “swaps” it would take to transform one ranking list to
another.

Kd(r, r̂) =
|{(ri > rj and r̂i < r̂j) or (ri < rj and r̂i > r̂j)}|

n(n− 1)/2
(5.1)

This function is related to the Kendall-τ , which is a measure of how close two ranking
vectors are [5]. As we have defined it, 0 represents complete agreement and 1 is
full disagreement. Other metrics such as mean squared error were considered, but
in ranking, the order of the sorted ranking list is typically more important than
the precise values of the ranking vector. Results of this experiment are given in
Fig. 5.1, which shows the log of the Kendall-τ distance for varying noise and number
of observations (as a percentage). Increasing

∑
i ri implies decreasing noise as is

consistent with the asymptotically decreasing trend in the τ -distance. The results
show that the modification made in Section 3 significantly improves the recovery of
ranking vectors.
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Fig. 5.1. Comparison of synthetic experiment results for one-bit matrix completion and the
simplified model (labeled vector).

6. Conclusion. In this paper, we have shown that ranking from pairwise com-
parisons can be viewed as a matrix completion problem. However, simplification due
to the matrix structure in this context allows us to dispense with nuclear norm mini-
mization and reduce the problem to a classical approach to ranking. We thus provide
new theoretical insight into this traditional approach to ranking. We find that this
proposed approach leads to significant recovery performance gains as compared to
the aforementioned matrix completion solution. Specifically, there is an improvement
by a factor of

√
n in the theoretical mean square recovery error between the two

approaches. This is supported by our experimental results.
In this paper, we considered only skew-symmetric, rank 2 matrices of the form

M = reT − erT . Although this simplifies the problem greatly, it is likely that many
inferences that can be made with the data are lost in imposing such a constraint.
For example, in general there may be multiple factors that determine which item
is preferred, and so in some cases it may be desirable to consider matrices M of
higher rank. Thus, an important area of future work in applying matrix completion
to pairwise ranking may involve loosening the assumptions made on M .
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