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I. INTRODUCTION

We consider the task of user preference learning, where we are given
a set of items embedded in a low-dimensional Euclidean space and aim
to represent the preferences of a user as a continuous point in the same
space so that their preference point is close to items the user likes and
far from items the user dislikes. The recovered preference point can
be used in various tasks, for instance in the recommendation of nearby
items, clustering of users with similar preferences, or personalized
product creation. To estimate this point, we consider a system using the
method of paired comparisons, where during a sequence of interactions
a user chooses which of two presented items they prefer [1]. In
this work, we assume a response model common in psychometrics
literature [2], where the probability of a user located at w choosing
item p over item q in a paired comparison is given by

P (p ≺ q) = f(kpq(aTw − b)), (1)

where a = 2(p−q) and b = ‖p‖2−‖q‖2 encode the normal vector and
threshold of a hyperplane bisecting items p and q, f(x) = 1/(1+e−x)
is the logistic function, and kpq is the pair’s noise constant, which
represents the signal-to-noise ratio of a particular query. Querying all
possible pairs to estimate user preferences is not only prohibitively
expensive for large datasets, but also unnecessary since not all queries
are informative. The main contribution of this work is the design and
analysis of two new query selection algorithms for low-dimensional
pairwise search that select the most informative pairs by directly
modeling redundancy and noise in user responses. While previous
active algorithms exist for related paired comparison models [3], [4],
none directly account for probabilistic user behavior as we do here.

II. QUERY SELECTION

For the ith paired comparison involving items pi, qi ∈ Rd (d ≥ 2),
let Yi = 1 (resp. 0) denote a preference for pi (resp. qi). After
i queries, we have the vector of responses Y i = {Y1, Y2, . . . Yi},
with each response assumed to be conditionally independent from
previous responses when conditioned on preference W ∈ Rd, which is
assumed to be drawn from a uniform hypercube prior. Let ΣW |Y i ≡
E[(W − E[W |Y i])(W − E[W |Y i])T |Y i], and define the posterior
volume as |ΣW |Y i |. We aim to adaptively select queries based on
previous responses that minimize the mean-squared error (MSE) of a
Bayesian preference estimator. Although selecting queries to directly
minimize MSE is computationally expensive, under the model in (1) it
can be shown that low differential entropy of the preference posterior
is a necessary and sufficient condition for low posterior volume, which
itself is a necessary condition for low MSE. This suggests a strategy
of selecting queries that maximize the decrease in posterior entropy
after a query (referred to here as the information gain and denoted by
I(W ;Yi|yi−1)) [5]. Based on this notion, we develop two strategies
that mimic the action of maximizing information gain while being
analytically and computationally tractable, respectively.

Consider the ith selected pair with bisecting hyperplane param-
eterized by (ai, bi) and define an equiprobable query strategy to
select bi such that each item in the query will be chosen by the user
with probability 1

2
, and a mean-cut strategy to select bi such that

the query hyperplane passes through the posterior mean. Define a
query’s projected variance as the variance of the posterior marginal in
the direction of a query’s hyperplane, i.e. aT

i ΣW |yi−1ai. With these
definitions, we have the following result:

Proposition II.1. For both equiprobable and mean-cut queries,
information gain is nearly-tightly lower bounded by monotonically
increasing functions of projected variance.

This result suggests choosing ai which maximize projected variance.
We refer to the selection of equiprobable queries in the direction of
largest projected variance as the equiprobable-max-variance (EPMV)
scheme, and mean-cut queries in the direction of largest projected
variance as the mean-cut, maximum variance (MCMV) scheme. Our
primary result concerns the expected number of comparisons sufficient
to reduce the posterior volume below a specified threshold set a priori,
using EPMV.

Theorem II.2. For the EPMV query scheme with each selected query
satisfying ki‖ai‖ ≥ kmin for some constant kmin > 0, consider the
stopping time Tε = min{i : |ΣW |yi |

1
d < ε} for stopping threshold

ε > 0. We have
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Furthermore, for any query scheme, E[Tε] = Ω
(
d log 1

ε

)
.

This result has a favorable dependence on the dimension d, and the
upper bound can be interpreted as a blend between two rates, one that
matches a generic lower bound and another that decreases to zero for
large noise constants. On the other hand, MCMV is attractive from a
computational standpoint since the posterior mean and covariance can
be estimated once per query round, and subsequent calculation of the
hyperplane distance from mean and projected variance requires only
O(d2) computations per pair, which scales more favorably than both
the information gain maximization (InfoGain) and EPMV strategies.

III. RESULTS

To evaluate our methods, we constructed a realistic embedding con-
sisting of multidimensional item points from the Yummly Food-10k
dataset of [6], [7], and simulated preference search over randomly
generated preference points and user responses, as depicted in Figure 1.
We compare against two competing methods that we refer to as
GaussCloud-Q [3] and ActRank-Q [4], as well as against randomly
selected queries. We evaluate each method on both the logistic noise
model (“matched” noise) as well as a scenario where noise is generated
according to a Gaussian model while the Bayesian methods continue to
calculate the posterior as if the responses were logistic (“mismatched”
noise). Our experiments demonstrate that both InfoGain approximation
strategies (EPMV and MCMV) significantly outperform the state-of-
the-art methods in active preference estimation in the context of
low-dimensional item embeddings with noisy user responses, and
perform similarity to InfoGain, the technique they were designed to
approximate. This is true even when generating responses according
to a different model than the one used for Bayesian estimation.



(a) Estimation error: matched logistic noise, d = 4 (b) Ranking performance: matched logistic noise, d = 4

(c) Estimation error: mismatched Gaussian noise, d = 7 (d) Ranking performance: mismatched Gaussian noise, d = 7

Fig. 1: Performance metrics in evaluating preference searching over 40 queries, averaged over 50 trials per method in a search task of the
Yummly Food-10k dataset. For Random, InfoGain, MCMV, and EPMV, we estimate the user point as the posterior mean since this is the
MMSE estimator. All traces are plotted with ± one standard error. (Left Column) MSE in estimating user preference. (Right Column) for
each trial, a batch of 15 items was uniformly sampled without replacement from the dataset, and the normalized Kendall’s Tau distance
was calculated between a ranking of these items by distance to the ground truth preference point and a ranking of distance to the estimated
point, with lower distance indicating better performance. To get an unbiased estimate, this metric is averaged over 1000 batches per trial, and
error bars calculated with respect to the number of trials. Rather than solely measuring preference estimation error, this metric measures
performance in the context of a recommender system type task, which is a common application of preference learning. (Top Row) “normalized”
(kpq = k0‖(p− q)‖−1) logistic model with matching noise in d = 4. (Bottom Row) “decaying” (kpq = k0 exp(−2‖(p− q)‖)) logistic model
with mismatched Gaussian “normalized” noise in d = 7. For a complete set of results, see the full paper at https://arxiv.org/abs/1905.04363.
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