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I. INTRODUCTION

Many signal processing problems require the estimation of sparse
and time-varying signals from undersampled and noisy measure-
ments. In the context of static sparse signals, incorporating a signal
model that exploits the sparse structure present in the signal has
been shown to dramatically improve estimation performance. In
dynamic settings, we would like to be able to similarly exploit a
priori knowledge that the signal evolves either slowly over time
or based on an imperfectly known dynamics model. Most methods
for incorporating both sparsity and dynamics information do so by
extending variants of `1-based methods. In this work, however, we
consider a sparse dynamic filtering algorithm that makes use of the
sparse Bayesian learning (SBL) procedure, which has been shown
to produce more accurate estimates than similar `1 methods [2],
particularly when the dictionary contains challenging structure such
as coherence and diverse column scaling [3], [4].

II. THE SBL-DF ALGORITHM

The SBL algorithm defines a hierarchical probabilistic model
consisting of a Gaussian likelihood on the observations, y ∼
N (Φx, σ2I); a zero-mean Gaussian prior on each element of xi,
xi ∼ N (0, γi); and a (conjugate) inverse Gamma hyperprior on
each variance, γi ∼ IG(ai, bi). The SBL inference procedure
consists of estimating the variance parameters by maximizing p (γ|y)
and then using these variances to compute the posterior estimate
x̂ = argmaxx p (x|y,γ) (see [5], [6] for details).

The traditional SBL algorithm fixes the parameters {ai, bi} of the
inverse Gamma hyperpriors to make the hyperpriors either uninfor-
mative or scale-invariant. The fundamental insight of our approach is
that an a priori signal estimate x̃ can be incorporated into the SBL
estimator by replacing these uninformative hyperparameters with
informative hyperpriors set using x̃. This method for incorporating
prior information has been shown to be particularly robust in [7],
which applied a similar strategy to the reweighted `1 procedure [8].
Intuitively, the “effective” prior formed by marginalizing over γi,
p (xi|ai, bi), becomes wider when |x̃i| is large, encouraging (but
not forcing) xi to be nonzero. From an optimization perspective, we
can view the informative-hyperprior SBL algorithm as minimizing
the objective `(γ) = `uninf (γ) + `dyn (γ), where `uninf repre-
sents the traditional (uninformative hyperprior) SBL objective and
`dyn (γ) = 2

∑
i

(
biγ

−1
i − ai log γ−1

i

)
represents the portion of the

objective contributed by the informative hyperprior that we will use
to incorporate dynamics information.

Our specific method for mapping the estimate x̃ to the hyperpa-
rameters ai and bi is performed in two steps. First, we calculate the
variances γ̃ = argminγ E ‖x̂− x̃‖22. Intuitively, γ̃ represents the
variances that would be used to make the estimate x̂ as close as
possible to the prediction x̃. This expression admits the closed-form
expression γ̃i = x̃2i when ΦTΦ is diagonal; although this is rarely

true in practice, we have found empirically that this approximation
works well. Second, we choose the hyperparameters ai and bi so
that γ̃ minimizes `dyn, which requires γi = bi/ai. Combining these
expressions for γ and incorporating a parameter ξ to control the
weight of the informative hyperpriors yields the mapping ai = ξ and
bi = ξ x̃2i . When this method is used in a causal tracking context, we
call the resulting algorithm SBL with dynamic filtering (SBL-DF).

Our proposed method for mapping an a priori signal estimate to the
SBL probability model is flexible, allowing its use in diverse tracking
scenarios. The signal estimate x̃ can be found with a dynamics model
that generates either a point estimate of, or distribution over, x(t).
Further, the estimate can be based on either only previous time steps
(producing an online algorithm) or both previous and future time
steps (producing a Kalman smoothing-type framework). Although
other similar methods (e.g., [9], [10]) improve performance by taking
advantage of global information, the flexibility of our proposed
algorithm makes it suitable for applications where this information
is unavailable.

III. NUMERICAL SIMULATIONS AND DISCUSSION

The key benefit of our proposed algorithm is that, by incorporating
a signal prediction into the higher-order parameters of a hierarchical
probability model, the resulting estimator allows prior knowledge
to be effectively exploited without significantly compromising per-
formance when the signal estimate is inaccurate. This robustness is
demonstrated in Figure 1, which shows that SBL-DF can accurately
estimate x with many fewer measurements than traditional SBL
requires, even when the estimate x̃ is noisy. Performance decreases
as x̃ becomes less accurate, but still improves on traditional SBL,
demonstrating the robustness of this approach. Here, we simulate
imperfect predictions using support errors, but we have observed
similar behavior with other error models such as Gaussian noise.
Note that setting the tuning parameter ξ based on the accuracy of the
signal prediction is necessary for optimal performance.

SBL is commonly used in settings where the dictionary contains
undesirable structure such as the combination of nonuniform column
scaling and coherence. Figure 2 demonstrates that SBL-DF is able
to accurately reconstruct signals with larger amounts of dictionary
structure than a state of the art `1-based dynamic filtering algorithm.

In addition to the improvement in estimation accuracy, incor-
porating a signal prediction in this way can significantly speed
convergence. Figure 3 shows a decrease of approximately one order
of magnitude in total computation time when using the EM iterations
of [5], [6]. An additional advantage of our specific method for
incorporating prior knowledge using informative hyperpriors is that
it admits a simple extension of the fast marginal likelihood (FML)
inference procedure of [11]. We present the details of this extension
to informative hyperpriors in [1]. Figure 3 shows that this extension
converges faster than the EM updates when the signal is very sparse.



Fig. 1. Rate of successful recovery as the number of measurements M is
varied. The signal x ∈ RN , which contains s = 16 nonzero entries, is ob-
served with noisy measurements y = Φx+e, where dictionary Φ ∈ RM×N

is constructed with i.i.d. Gaussian entries and e ∼ N (0, 10−3I). The signal
is recovered with traditional (uninformative) SBL and with SBL-DF. SBL-DF
uses a prediction x̃ generated from a corrupted version of x by randomly
swapping the value of k of the 16 nonzero elements with zero-valued
elements. Success is claimed when relative MSE ‖x− x̂‖22 / ‖x‖

2
2 < 10−2.

The tuning parameter ξ is selected independently for each error level and
240 trials are performed at each point. Error bars represent a 95% confidence
interval on the rate.
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Fig. 2. Reconstruction performance in terms of relative MSE,
‖x− x̂‖22 / ‖x‖

2
2 < 10−2, and rate of successful recovery as the amount

of dictionary structure is varied. The “structure parameter” represents a joint
measure of the column scaling and coherence between groups of columns in
the dictionary (see [1] for details and a discussion of the individual effects of
column scaling and coherence). The signal x ∈ RN , which contains s = 25
nonzero entries, is observed with noisy measurements y = Φx + e, where
Φ ∈ R42×100, e ∼ N (0, σ2

obs). The signal prediction x̃ is generated from
x by swapping nonzero entries with zero-valued entries with probability
p = 0.1, then adding white Gaussian noise with variance σ2

dyn = 10−4.
Success is claimed when relative MSE ‖x− x̂‖22 / ‖x‖

2
2 < 10−2. The

tuning parameters (ξ for SBL-DF, and {ξ, ν, λ0} for RWL1-DF) are selected
independently for each structure and noise level, and 40 trials are performed
at each point. RWL1-DF is the reweighted `1 with dynamic filtering algorithm
of [7].
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