
Examples of convex optimization problems

Before we dig deeper into the mathematical and algorithmic details
of convex optimization, we will start with a very brief tour of common
categories of convex optimization problems, giving a few practical ex-
amples where each arises. This discussion is by no means exhaustive,
but is merely intended to help you to have some concrete examples
in the back of your mind where the techniques we will soon start
developing can be applied.

Linear programming

Perhaps the simplest convex optimization problem to write down
(although not necessarily the easiest to solve) is a linear program
(LP). An LP minimizes a linear objective function subject to multiple
linear constraints:

minimize
x

cTx subject to aT
mx ≤ bm, m = 1, . . . ,M.

The general form above can include linear equality constraints aT
i x =

bi by enforcing both aT
i x ≤ bi and (−ai)Tx ≤ bi — in our study

later on, we will find it convenient to specifically distinguish between
these two types of constraints. We can also write the M constraints
compactly as Ax ≤ b, where A is the M ×N matrix with the aT

m

as rows.

Linear programs do not necessarily have to have a solution; it is
possible that there is no x such that Ax ≤ b, or that the program
is unbounded in that there exists a series x1,x2, . . . , all obeying
Axk ≤ b, with lim cTxk → −∞.
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There is no formula for the solution of a general linear program.
Fortunately, there exists very reliable and efficient software for solving
them. The first LP solver was developed in the late 1940s (Dantzig’s
“simplex algorithm”), and now LP solvers are considered a mature
technology. If the constraint matrix A is structured, then linear
programs with millions of variables can be solved to high accuracy
on a standard computer.

Linear programs are a very important class of optimization prob-
lems. However, if a single constraint (or the objective function) are
nonlinear, then we move into the much broader class of nonlinear
programs. While much of what we will discuss in this course is rel-
evant to LPs, we will spend a greater fraction of the course discussing
these more general nonlinear optimization problems.

Example: Chebyshev approximations

Suppose that we want to find the vector x so that Ax does not vary
too much in its maximum deviation:

minimize
x∈RN

max
m=1,...,M

|ym − aT
mx| = minimize

x∈RN
‖y −Ax‖∞.

This is called the Chebyshev approximation problem.

We can solve this problem with linear programming. To do this, we
introduce the auxiliary variable u ∈ R — it should be easy to see
that the program above is equivalent to

minimize
x∈RN , u∈R

u subject to ym − aT
mx ≤ u

ym − aT
mx ≥ −u

m = 1, . . . ,M.
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To put this in the standard linear programming form, take

z =

[
x
u

]
, c′ =

[
0
1

]
, A′ =

[
−A −1
A −1

]
, b′ =

[
−y
y

]
,

and then solve

minimize
z∈RN+1

c′Tz subject to A′z ≤ b′.

One natural application of this arises in the context of filter design.
The standard “filter synthesis” problem is to find an finite-impulse
response (FIR) filter whose discrete-time Fourier transform (DTFT)
is as close to some target H?(ω) as possible.

We can write this as an optimization problem as follows:

minimize
H

sup
ω∈[−π,π]

|H?(ω)−H(ω)| , subject to H(ω) being FIR

When the deviation from the optimal response is measured using a
uniform error, this is called “equiripple design”, since the error in the
solution will tend to have ripples a uniform distance away from the
ideal.

If we restrict ourselves to the case where H?(ω) has linear phase (so
the impulse response is symmetric around some time index)1 we can
recast this as a Chebyshev approximation problem.

Specifically, a symmetric filter with 2K+1 taps (meaning that hn = 0
for |n| > K) has a real DTFT that can be written as a superposition
of a DC term plus K cosines:

H(ω) =
K∑
k=0

h̃k cos(kω), h̃k =

{
h0, k = 0

2hk, 1 ≤ k ≤ K.

1The case with general phase can also be handled using convex optimization,
but it is not naturally stated as a linear program.
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So we are trying to solve

minimize
x∈RK+1

sup
ω∈[−π,π]

∣∣∣∣∣H?(ω)−
K∑
k=0

xk cos(kω)

∣∣∣∣∣ .
It is actually possible to solve this problem as stated – our very own
Jim McClellan worked this out in the early 1970s with his advisor
Tom Parks, developing the now ubiquitous Parks-McClellan filter
design algorithm. The solution is not obvious, however, mostly due
to the presence of supremum over ω.

Here, suppose we instead approximate the supremum on the inside
by measuring it at M equally spaced points ω1, . . . , ωM between −π
and π. Then

minimize
x

max
ωm

∣∣∣∣∣H?(ωm)−
K∑
k=0

xk cos(kωm)

∣∣∣∣∣ = minimize
x

‖y−Fx‖∞,

where y ∈ RM and the M × (K + 1) matrix F are defined as

y =


H?(ω1)
H?(ω2)

...
H?(ωM),

 F =


1 cos(ω1) cos(2ω1) · · · cos(Kω1)
1 cos(ω2) cos(2ω2) · · · cos(Kω2)
... . . .
1 cos(ωM) cos(2ωM) · · · cos(KωM)


It should be noted that since the ωm are equally spaced, the matrix F
(and its adjoint) can be applied efficiently using a fast discrete cosine
transform. This has a direct impact on the number of computations
we need to solve the Chebyshev approximation problem above.
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Least squares

A prototypical example of a nonlinear convex optimization problem
is least squares. Specifically, given a M × N matrix A and a
vector y ∈ RM , the unconstrained least squares problem is given by

minimize
x∈RN

‖y −Ax‖22. (1)

When A has full column rank (and so M ≥ N), then there is a
unique closed-form solution:

x̂ = (ATA)−1ATy.

We can also write this in terms of the SVD of A = UΣV T:

x̂ = V Σ−1UTy.

The mapping from the data vector y to the solution x̂ is linear, and
the corresponding N ×M matrix V Σ−1UT is called the pseudo-
inverse.

When A does not have full column rank, then the solution is non-
unique. An interesting case is whenA is underdetermined (M < N)
with rank(A) = M (full row rank). Then there are many x such
that y = Ax and so ‖y −Ax‖22 = 0. Of these, we might choose
the one which has the smallest norm:

minimize
x∈RN

‖x‖2 subject to Ax = y.

It turns out that the solution is again given by the pseudo-inverse.
We can still write A = UΣV T, where Σ is M ×M , diagonal, and
invertible, U is M ×M and V is N ×M . Then x̂ = V Σ−1UT

find the shortest vector (in the Euclidean sense) that obeys the M
specified linear constraints.
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Example: Regression

A fundamental problem in statistics is to estimate a function given
point samples (that are possibly heavily corrupted). We observe pairs
of points2 (xm, ym) for m = 1, . . . ,M , and want to find a function
f (x) such that

f (xm) ≈ ym, m = 1, . . . ,M.

Of course, the problem is not well-posed yet, since there are any
number of functions for which f (xm) = ym exactly. We regularize
the problem in two ways. The first is by specifying a class that f (·)
belongs to. One way of doing this is by building f up out of a linear
combination of basis functions φn(·):

f (x) =
N∑
n=1

αnφn(x).

We now fit a function by solving for the expansion coefficients α.
There is a classical complexity versus robustness trade-off in choosing
the number of basis functions N .

The quality of a proposed fit is measured by a loss function — this
loss is typically (but not necessarily) specified pointwise at each of
the samples, and then averaged over all the sample points:

Loss(α;x,y) =
1

M

M∑
m=1

`(α;xm, ym).

2We are just considering functions of a single variable here, but it is easy to
see how the basic setup extends to functions of a vector.
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One choice for `(·) is the squared-loss:

`(α;xm, ym) =

(
ym −

N∑
n=1

αnφn(xm)

)2

,

which is just the square between the difference of the observed value
ym and its prediction using the candidate α.

We can express everything more simply by putting it in matrix form.
We create the M ×N matrix Φ:

Φ =


φ1(x1) φ2(x1) · · · φN(x1)
φ1(x2) φ2(x2) · · · φN(x2)

... . . .
φ1(xM) φ2(xM) · · · φN(xM)


Φ maps a set of expansion coefficients α ∈ RN to a set of M pre-
dictions for the vector of observations y ∈ RM . Finding the α
that minimizes the squared-loss is now reduced to the standard least
squares problem:

minimize
α∈RN

‖y −Φα‖22

It is also possible to smooth the results and stay in the least squares
framework. If Φ is ill-conditioned, then the least squares solution
might do dramatic things to α to make it match y as closely as
possible. To discourage this, we can penalize ‖α‖2:

minimize
α∈RN

‖y −Φα‖22 + τ‖α‖22,

where τ > 0 is a parameter we can adjust. This can be converted
back to standard least squares problem by concatenating (

√
τ times)
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the identity to the bottom of Φ and zeros to the bottom of y. At
any rate, the formula for the solution to this program is

x̂ = (ΦTΦ + τI)−1ΦTy.

This is called ridge regression in the statistics community (and
Tikhonov regularization in the linear inverse problems community).

Another strategy in such cases is to choose a slightly different regu-
larizer and penalize ‖α‖1:

minimize
α∈RN

‖y −Φα‖22 + τ‖α‖1.

This is most commonly known as the LASSO (for “least absolute
shrinkage and selection operator”). This small change can have a
dramatic impact in the properties of the resulting solution. In partic-
ular, it is an effective strategy for promoting sparsity in the solution
α̂. This is useful in a variety of circumstances, and is something we
will return to later in this course.

Note, however, that unlike ridge regression/Tikhonov regularization,
the LASSO no longer has a closed form solution. Moreover, the term
involving ‖α‖1 is not differentiable. Optimization problems like this
are an important class of problems, and one that we will devote
significant attention to later in this course.
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Quadratic programming

Let us briefly return to our standard least squares problem in (1). It
is easy to show that this is equivalent to the problem of

minimize
x∈RN

xTATAx− 2yTAx.

Suppose you now wanted to enforce some additional structure on α.
For example, you might have reason to desire a solution with only
non-negative values. In adding such a constraint, we arrive at an
example of a quadratic program (QP).

A QP minimizes a quadratic functional subject to linear constraints:

minimize
x

xTHx + cTx, subject to Ax ≤ b.

IfH is symmetric positive semidefinite (i.e., symmetric with nonneg-
ative eigenvalues), then the program is convex. IfH has even a single
negative eigenvalue, then solving the program above is NP-hard.

QPs are almost as ubiquitous as LPs; they have been used in finance
since the 1950s (see the example below), and are found all over oper-
ations research, control systems, and machine learning. As with LPs,
there are reliable solvers and can be considered a mature technology.

A quadratically constrained quadratic program (QCQP)
allows (convex) quadratic inequality constraints:

minimize
x

xTHx + cTx, subject to xTHmx + cTmx ≤ bm,

m = 1, . . . ,M.

This program is convex if all of the Hm are symmetric positive
semidefinite; we are minimizing a convex quadratic functional over a
region defined by an intersection of ellipsoids.
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Example: Portfolio optimization

One of the classic examples in convex optimization is finding invest-
ment strategies that “optimally”3 balance the risk versus the return.
The following quadratic program formulation is due to Markowitz,
who formulated it in the 1950s, then won a Nobel Prize for it in 1990.

We want to spread our money over N different assets; the fraction of
our money we invest in asset n is denoted xn. We have the immediate
constraints that

N∑
n=1

xn = 1, and 0 ≤ xn ≤ 1, for n = 1, . . . , N.

The expected return on these investments, which are usually calcu-
lated using some kind of historical average, is µ1, . . . , µN . The µn
are specified as multipliers, so µn = 1.16 means that asset n has a
historical return of 16%. We specify some target expected return ρ,
which means

N∑
n=1

µnxn ≥ ρ.

We want to solve for the x that achieves this level of return while
minimizing our risk. Here, the definition of risk is simply the variance
of our return — if the assets have covariance matrix R, then the risk
of a given portfolio allocation x is

Risk(x) = xTRx =
M∑
m=1

M∑
n=1

Rmnxmxn.

3I put “optimally” in quotes because, like everything in finance and the
world, this technique finds the optimal answer for a specified model. The
big question is then how good your model is ...
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Our optimization program is then4

minimize
x

xTRx

subject to µTx ≥ ρ

1Tx = 1

0 ≤ x ≤ 1.

This is an example of a QP with linear constraints. It is convex since
the matrix R is a covariance matrix, and so by construction it is
symmetric positive semidefinite.

Example: Support vector machines

Support vector machines (SVMs) are a classical approach for
designing a classifier in machine learning, and involves solving an
optimization problem that we will revisit again in more detail later
on in the course. An SVM takes as input a dataset {xi, yi} with
xi ∈ RN and yi ∈ {−1,+1}.

The goal of the SVM is to find a vector w ∈ RN and a scalar b ∈ R
that define a separating hyperplane, i.e., a hyperplane that separates
the sets {xi : yi = +1} and {xi : yi = −1}. This can be posed as
constraints on w and b of the form

(xT
i w + b)yi ≥ 1.

Among all separating hyperplanes, it turns out that the one that
minimizes ‖w‖22 corresponds to the hyperplane that maximizes the

4Throughout these notes, we will use 1 for a vector of all ones, and 0 for a
vector of all zeros.
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margin between the two classes, where the margin corresponds to
the distance from the hyperplane to the nearest xi.

Thus, the problem of finding the best (maximum margin) separating
hyperplane reduces to

minimize
w,b

‖w‖22 subject to (xT
i w + b)yi ≥ 1 for all i.

This is another example of a QP with linear constraints.

Second-order cone programs

A second-order cone program (SOCP) is an optimization prob-
lem where the constraint set forms what is called, perhaps unsurpris-
ingly, a second-order cone. The canonical example of a second-order
cone is the set: {

(x, t),x ∈ RN , t ∈ R : ‖x‖2 ≤ t
}
.

This is a subset of RN+1. Here is an example in R3:

x1

x2

t

0

21

Georgia Tech ECE 6270 notes by M. A. Davenport, M. B. Egerstedt, and J. Romberg. Last updated 8:18, January 25, 2021



The standard form of a SOCP is

minimize
x

cTx

subject to ‖Amx + bm‖2 ≤ cTmx + dm, m = 1, . . . ,M.

We have a linear objective function and constraints that require (y, t)
to lie inside the second-order cone, where y and t are allowed to be
any affine function of x.

SOCPs turn out to be much more common than you might initially
expect. First, it is not hard to show that an LP is also a SOCP. It
turns out that QPs and (convex) QCQPs are also SOCPs, so we can
think of SOCPs as a generalization of what we have already seen.
However, the class of possible SOCPs also includes many optimiza-
tion problems beyond what we have seen so far.

Example: Generalized geometric medians

Suppose that we have M points p1, . . . ,pM ∈ RN and that we would
like to find the “center” of this set of points. The geometric median
is the point x that minimizes the sum (or equivalently, average) of
the distances to the points p1, . . . ,pM . This can be posed as the
optimization problem

minimize
x

M∑
m=1

‖x− pm‖2.

In the case where N = 1, this is equivalent to the standard median.
The special case of M = 3 points in a dimension N ≥ 2 was first
considered by Pierre de Fermat, with Evangelista Torricelli providing
a simple geometric solution in the 17th century. In general, however,
there is no closed-form solution to this problem.
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It is relatively straightforward to show that this problem can be cast
as a SOCP. Specifically, it should be clear that it is equivalent to:

minimize
x,t

M∑
m=1

tm

subject to ‖x− pm‖2 ≤ tm, m = 1, . . . ,M.

A slight variation on this problem is to try to minimize the maximum
distance from x to the pm:

minimize
x

max
m∈{1,...,M}

‖x− pm‖2.

This too has a simple formulation as a SOCP:

minimize
x,t

t

subject to ‖x− pm‖2 ≤ t, m = 1, . . . ,M.

Semidefinite programs

So far we have typically been looking at problems where we are
optimizing over vectors x ∈ RN . In many important applications,
our decision variables are more naturally represented as a matrix X .
In such problems, it is common to encounter the constraint that this
matrixX must be positive semidefinite. When the objective function
is linear and we have affine constraints, this is called a semidefinite
program (SDP).

To state the standard form for an SDP, it is useful to introduce some
notation. First, we will let SN denote the set of N × N symmetric
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matrices, and SN+ the set of symmetric positive semidefinite matrices.
Furthermore, we let

〈Y ,X〉 = trace(Y TX)

denote the (trace) inner product between a pair of matrices.5 With
this notation in hand, the standard form for an SDP is given by

minimize
X

〈C,X〉
subject to 〈Am,X〉 ≤ bm, m = 1, . . . ,M

X ∈ SN+ ,

where C,A1, . . . ,AM ∈ S.

SDPs are the broadest class of convex problems that we will study
in this course. All of the problems we have looked at so far (LPs,
QPs, SOCPs) can be shown to be special cases of SDPs. We will see
a number of examples of SDPs that arise in applications throughout
the course.

Example: Bounding portfolio risk

Let us briefly return to our previous example or portfolio optimiza-
tion. Before we assumed that we knew the expected returns and the
covariance matrixR for the different assets under consideration, and
our goal was to determine the optimal allocation. Here we consider
a slightly different problem. Suppose that we already have a fixed
allocation x across the different assets, but rather than knowing the

5This is simply the inner product that would result from reshaping X and
Y into vectors and applying the standard inner product.
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covariance matrix R exactly, we assume that we have only an esti-
mate of R. A natural question is whether we can quantify how large
the true risk of our portfolio might be in such a case.

Suppose that we have confidence intervals on how accurate our co-
variance estimate is of the form

Lmn ≤ Rmn ≤ Umn.

For a given portfolio x, we can compute the maximum possible risk
of that portfolio that is consistent with the given bounds via the
following SDP:

maximize
R

xTRx

subject to Lmn ≤ Rmn ≤ Umn, m, n = 1, . . . , N

R ∈ SN+ .

We have to enforce the constraint that R ∈ SN+ because R must be
a covariance matrix, and ignoring this constraint would yield a risk
that is not actually achievable.
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